Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 | /************************************************************************** * * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. * Copyright 2016 Intel Corporation * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * **************************************************************************/ /* * Generic simple memory manager implementation. Intended to be used as a base * class implementation for more advanced memory managers. * * Note that the algorithm used is quite simple and there might be substantial * performance gains if a smarter free list is implemented. Currently it is * just an unordered stack of free regions. This could easily be improved if * an RB-tree is used instead. At least if we expect heavy fragmentation. * * Aligned allocations can also see improvement. * * Authors: * Thomas Hellström <thomas-at-tungstengraphics-dot-com> */ #include <linux/export.h> #include <linux/interval_tree_generic.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/stacktrace.h> #include <drm/drm_mm.h> /** * DOC: Overview * * drm_mm provides a simple range allocator. The drivers are free to use the * resource allocator from the linux core if it suits them, the upside of drm_mm * is that it's in the DRM core. Which means that it's easier to extend for * some of the crazier special purpose needs of gpus. * * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. * Drivers are free to embed either of them into their own suitable * datastructures. drm_mm itself will not do any memory allocations of its own, * so if drivers choose not to embed nodes they need to still allocate them * themselves. * * The range allocator also supports reservation of preallocated blocks. This is * useful for taking over initial mode setting configurations from the firmware, * where an object needs to be created which exactly matches the firmware's * scanout target. As long as the range is still free it can be inserted anytime * after the allocator is initialized, which helps with avoiding looped * dependencies in the driver load sequence. * * drm_mm maintains a stack of most recently freed holes, which of all * simplistic datastructures seems to be a fairly decent approach to clustering * allocations and avoiding too much fragmentation. This means free space * searches are O(num_holes). Given that all the fancy features drm_mm supports * something better would be fairly complex and since gfx thrashing is a fairly * steep cliff not a real concern. Removing a node again is O(1). * * drm_mm supports a few features: Alignment and range restrictions can be * supplied. Furthermore every &drm_mm_node has a color value (which is just an * opaque unsigned long) which in conjunction with a driver callback can be used * to implement sophisticated placement restrictions. The i915 DRM driver uses * this to implement guard pages between incompatible caching domains in the * graphics TT. * * Two behaviors are supported for searching and allocating: bottom-up and * top-down. The default is bottom-up. Top-down allocation can be used if the * memory area has different restrictions, or just to reduce fragmentation. * * Finally iteration helpers to walk all nodes and all holes are provided as are * some basic allocator dumpers for debugging. * * Note that this range allocator is not thread-safe, drivers need to protect * modifications with their own locking. The idea behind this is that for a full * memory manager additional data needs to be protected anyway, hence internal * locking would be fully redundant. */ #ifdef CONFIG_DRM_DEBUG_MM #include <linux/stackdepot.h> #define STACKDEPTH 32 #define BUFSZ 4096 static noinline void save_stack(struct drm_mm_node *node) { unsigned long entries[STACKDEPTH]; unsigned int n; n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); /* May be called under spinlock, so avoid sleeping */ node->stack = stack_depot_save(entries, n, GFP_NOWAIT); } static void show_leaks(struct drm_mm *mm) { struct drm_mm_node *node; unsigned long *entries; unsigned int nr_entries; char *buf; buf = kmalloc(BUFSZ, GFP_KERNEL); if (!buf) return; list_for_each_entry(node, drm_mm_nodes(mm), node_list) { if (!node->stack) { DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", node->start, node->size); continue; } nr_entries = stack_depot_fetch(node->stack, &entries); stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", node->start, node->size, buf); } kfree(buf); } #undef STACKDEPTH #undef BUFSZ #else static void save_stack(struct drm_mm_node *node) { } static void show_leaks(struct drm_mm *mm) { } #endif #define START(node) ((node)->start) #define LAST(node) ((node)->start + (node)->size - 1) INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, u64, __subtree_last, START, LAST, static inline, drm_mm_interval_tree) struct drm_mm_node * __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) { return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, start, last) ?: (struct drm_mm_node *)&mm->head_node; } EXPORT_SYMBOL(__drm_mm_interval_first); static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, struct drm_mm_node *node) { struct drm_mm *mm = hole_node->mm; struct rb_node **link, *rb; struct drm_mm_node *parent; bool leftmost; node->__subtree_last = LAST(node); if (drm_mm_node_allocated(hole_node)) { rb = &hole_node->rb; while (rb) { parent = rb_entry(rb, struct drm_mm_node, rb); if (parent->__subtree_last >= node->__subtree_last) break; parent->__subtree_last = node->__subtree_last; rb = rb_parent(rb); } rb = &hole_node->rb; link = &hole_node->rb.rb_right; leftmost = false; } else { rb = NULL; link = &mm->interval_tree.rb_root.rb_node; leftmost = true; } while (*link) { rb = *link; parent = rb_entry(rb, struct drm_mm_node, rb); if (parent->__subtree_last < node->__subtree_last) parent->__subtree_last = node->__subtree_last; if (node->start < parent->start) { link = &parent->rb.rb_left; } else { link = &parent->rb.rb_right; leftmost = false; } } rb_link_node(&node->rb, rb, link); rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, &drm_mm_interval_tree_augment); } #define HOLE_SIZE(NODE) ((NODE)->hole_size) #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) static u64 rb_to_hole_size(struct rb_node *rb) { return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; } static void insert_hole_size(struct rb_root_cached *root, struct drm_mm_node *node) { struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; u64 x = node->hole_size; bool first = true; while (*link) { rb = *link; if (x > rb_to_hole_size(rb)) { link = &rb->rb_left; } else { link = &rb->rb_right; first = false; } } rb_link_node(&node->rb_hole_size, rb, link); rb_insert_color_cached(&node->rb_hole_size, root, first); } RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks, struct drm_mm_node, rb_hole_addr, u64, subtree_max_hole, HOLE_SIZE) static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node) { struct rb_node **link = &root->rb_node, *rb_parent = NULL; u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole; struct drm_mm_node *parent; while (*link) { rb_parent = *link; parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr); if (parent->subtree_max_hole < subtree_max_hole) parent->subtree_max_hole = subtree_max_hole; if (start < HOLE_ADDR(parent)) link = &parent->rb_hole_addr.rb_left; else link = &parent->rb_hole_addr.rb_right; } rb_link_node(&node->rb_hole_addr, rb_parent, link); rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks); } static void add_hole(struct drm_mm_node *node) { struct drm_mm *mm = node->mm; node->hole_size = __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); node->subtree_max_hole = node->hole_size; DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); insert_hole_size(&mm->holes_size, node); insert_hole_addr(&mm->holes_addr, node); list_add(&node->hole_stack, &mm->hole_stack); } static void rm_hole(struct drm_mm_node *node) { DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); list_del(&node->hole_stack); rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr, &augment_callbacks); node->hole_size = 0; node->subtree_max_hole = 0; DRM_MM_BUG_ON(drm_mm_hole_follows(node)); } static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) { return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); } static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) { return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); } static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) { struct rb_node *rb = mm->holes_size.rb_root.rb_node; struct drm_mm_node *best = NULL; do { struct drm_mm_node *node = rb_entry(rb, struct drm_mm_node, rb_hole_size); if (size <= node->hole_size) { best = node; rb = rb->rb_right; } else { rb = rb->rb_left; } } while (rb); return best; } static bool usable_hole_addr(struct rb_node *rb, u64 size) { return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size; } static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size) { struct rb_node *rb = mm->holes_addr.rb_node; struct drm_mm_node *node = NULL; while (rb) { u64 hole_start; if (!usable_hole_addr(rb, size)) break; node = rb_hole_addr_to_node(rb); hole_start = __drm_mm_hole_node_start(node); if (addr < hole_start) rb = node->rb_hole_addr.rb_left; else if (addr > hole_start + node->hole_size) rb = node->rb_hole_addr.rb_right; else break; } return node; } static struct drm_mm_node * first_hole(struct drm_mm *mm, u64 start, u64 end, u64 size, enum drm_mm_insert_mode mode) { switch (mode) { default: case DRM_MM_INSERT_BEST: return best_hole(mm, size); case DRM_MM_INSERT_LOW: return find_hole_addr(mm, start, size); case DRM_MM_INSERT_HIGH: return find_hole_addr(mm, end, size); case DRM_MM_INSERT_EVICT: return list_first_entry_or_null(&mm->hole_stack, struct drm_mm_node, hole_stack); } } /** * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions * @name: name of function to declare * @first: first rb member to traverse (either rb_left or rb_right). * @last: last rb member to traverse (either rb_right or rb_left). * * This macro declares a function to return the next hole of the addr rb tree. * While traversing the tree we take the searched size into account and only * visit branches with potential big enough holes. */ #define DECLARE_NEXT_HOLE_ADDR(name, first, last) \ static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size) \ { \ struct rb_node *parent, *node = &entry->rb_hole_addr; \ \ if (!entry || RB_EMPTY_NODE(node)) \ return NULL; \ \ if (usable_hole_addr(node->first, size)) { \ node = node->first; \ while (usable_hole_addr(node->last, size)) \ node = node->last; \ return rb_hole_addr_to_node(node); \ } \ \ while ((parent = rb_parent(node)) && node == parent->first) \ node = parent; \ \ return rb_hole_addr_to_node(parent); \ } DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right) DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left) static struct drm_mm_node * next_hole(struct drm_mm *mm, struct drm_mm_node *node, u64 size, enum drm_mm_insert_mode mode) { switch (mode) { default: case DRM_MM_INSERT_BEST: return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); case DRM_MM_INSERT_LOW: return next_hole_low_addr(node, size); case DRM_MM_INSERT_HIGH: return next_hole_high_addr(node, size); case DRM_MM_INSERT_EVICT: node = list_next_entry(node, hole_stack); return &node->hole_stack == &mm->hole_stack ? NULL : node; } } /** * drm_mm_reserve_node - insert an pre-initialized node * @mm: drm_mm allocator to insert @node into * @node: drm_mm_node to insert * * This functions inserts an already set-up &drm_mm_node into the allocator, * meaning that start, size and color must be set by the caller. All other * fields must be cleared to 0. This is useful to initialize the allocator with * preallocated objects which must be set-up before the range allocator can be * set-up, e.g. when taking over a firmware framebuffer. * * Returns: * 0 on success, -ENOSPC if there's no hole where @node is. */ int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) { struct drm_mm_node *hole; u64 hole_start, hole_end; u64 adj_start, adj_end; u64 end; end = node->start + node->size; if (unlikely(end <= node->start)) return -ENOSPC; /* Find the relevant hole to add our node to */ hole = find_hole_addr(mm, node->start, 0); if (!hole) return -ENOSPC; adj_start = hole_start = __drm_mm_hole_node_start(hole); adj_end = hole_end = hole_start + hole->hole_size; if (mm->color_adjust) mm->color_adjust(hole, node->color, &adj_start, &adj_end); if (adj_start > node->start || adj_end < end) return -ENOSPC; node->mm = mm; __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); list_add(&node->node_list, &hole->node_list); drm_mm_interval_tree_add_node(hole, node); node->hole_size = 0; rm_hole(hole); if (node->start > hole_start) add_hole(hole); if (end < hole_end) add_hole(node); save_stack(node); return 0; } EXPORT_SYMBOL(drm_mm_reserve_node); static u64 rb_to_hole_size_or_zero(struct rb_node *rb) { return rb ? rb_to_hole_size(rb) : 0; } /** * drm_mm_insert_node_in_range - ranged search for space and insert @node * @mm: drm_mm to allocate from * @node: preallocate node to insert * @size: size of the allocation * @alignment: alignment of the allocation * @color: opaque tag value to use for this node * @range_start: start of the allowed range for this node * @range_end: end of the allowed range for this node * @mode: fine-tune the allocation search and placement * * The preallocated @node must be cleared to 0. * * Returns: * 0 on success, -ENOSPC if there's no suitable hole. */ int drm_mm_insert_node_in_range(struct drm_mm * const mm, struct drm_mm_node * const node, u64 size, u64 alignment, unsigned long color, u64 range_start, u64 range_end, enum drm_mm_insert_mode mode) { struct drm_mm_node *hole; u64 remainder_mask; bool once; DRM_MM_BUG_ON(range_start > range_end); if (unlikely(size == 0 || range_end - range_start < size)) return -ENOSPC; if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) return -ENOSPC; if (alignment <= 1) alignment = 0; once = mode & DRM_MM_INSERT_ONCE; mode &= ~DRM_MM_INSERT_ONCE; remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; for (hole = first_hole(mm, range_start, range_end, size, mode); hole; hole = once ? NULL : next_hole(mm, hole, size, mode)) { u64 hole_start = __drm_mm_hole_node_start(hole); u64 hole_end = hole_start + hole->hole_size; u64 adj_start, adj_end; u64 col_start, col_end; if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) break; if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) break; col_start = hole_start; col_end = hole_end; if (mm->color_adjust) mm->color_adjust(hole, color, &col_start, &col_end); adj_start = max(col_start, range_start); adj_end = min(col_end, range_end); if (adj_end <= adj_start || adj_end - adj_start < size) continue; if (mode == DRM_MM_INSERT_HIGH) adj_start = adj_end - size; if (alignment) { u64 rem; if (likely(remainder_mask)) rem = adj_start & remainder_mask; else div64_u64_rem(adj_start, alignment, &rem); if (rem) { adj_start -= rem; if (mode != DRM_MM_INSERT_HIGH) adj_start += alignment; if (adj_start < max(col_start, range_start) || min(col_end, range_end) - adj_start < size) continue; if (adj_end <= adj_start || adj_end - adj_start < size) continue; } } node->mm = mm; node->size = size; node->start = adj_start; node->color = color; node->hole_size = 0; __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); list_add(&node->node_list, &hole->node_list); drm_mm_interval_tree_add_node(hole, node); rm_hole(hole); if (adj_start > hole_start) add_hole(hole); if (adj_start + size < hole_end) add_hole(node); save_stack(node); return 0; } return -ENOSPC; } EXPORT_SYMBOL(drm_mm_insert_node_in_range); static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) { return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); } /** * drm_mm_remove_node - Remove a memory node from the allocator. * @node: drm_mm_node to remove * * This just removes a node from its drm_mm allocator. The node does not need to * be cleared again before it can be re-inserted into this or any other drm_mm * allocator. It is a bug to call this function on a unallocated node. */ void drm_mm_remove_node(struct drm_mm_node *node) { struct drm_mm *mm = node->mm; struct drm_mm_node *prev_node; DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); prev_node = list_prev_entry(node, node_list); if (drm_mm_hole_follows(node)) rm_hole(node); drm_mm_interval_tree_remove(node, &mm->interval_tree); list_del(&node->node_list); if (drm_mm_hole_follows(prev_node)) rm_hole(prev_node); add_hole(prev_node); clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); } EXPORT_SYMBOL(drm_mm_remove_node); /** * drm_mm_replace_node - move an allocation from @old to @new * @old: drm_mm_node to remove from the allocator * @new: drm_mm_node which should inherit @old's allocation * * This is useful for when drivers embed the drm_mm_node structure and hence * can't move allocations by reassigning pointers. It's a combination of remove * and insert with the guarantee that the allocation start will match. */ void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) { struct drm_mm *mm = old->mm; DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); *new = *old; __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); list_replace(&old->node_list, &new->node_list); rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); if (drm_mm_hole_follows(old)) { list_replace(&old->hole_stack, &new->hole_stack); rb_replace_node_cached(&old->rb_hole_size, &new->rb_hole_size, &mm->holes_size); rb_replace_node(&old->rb_hole_addr, &new->rb_hole_addr, &mm->holes_addr); } clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); } EXPORT_SYMBOL(drm_mm_replace_node); /** * DOC: lru scan roster * * Very often GPUs need to have continuous allocations for a given object. When * evicting objects to make space for a new one it is therefore not most * efficient when we simply start to select all objects from the tail of an LRU * until there's a suitable hole: Especially for big objects or nodes that * otherwise have special allocation constraints there's a good chance we evict * lots of (smaller) objects unnecessarily. * * The DRM range allocator supports this use-case through the scanning * interfaces. First a scan operation needs to be initialized with * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds * objects to the roster, probably by walking an LRU list, but this can be * freely implemented. Eviction candiates are added using * drm_mm_scan_add_block() until a suitable hole is found or there are no * further evictable objects. Eviction roster metadata is tracked in &struct * drm_mm_scan. * * The driver must walk through all objects again in exactly the reverse * order to restore the allocator state. Note that while the allocator is used * in the scan mode no other operation is allowed. * * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() * reported true) in the scan, and any overlapping nodes after color adjustment * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and * since freeing a node is also O(1) the overall complexity is * O(scanned_objects). So like the free stack which needs to be walked before a * scan operation even begins this is linear in the number of objects. It * doesn't seem to hurt too badly. */ /** * drm_mm_scan_init_with_range - initialize range-restricted lru scanning * @scan: scan state * @mm: drm_mm to scan * @size: size of the allocation * @alignment: alignment of the allocation * @color: opaque tag value to use for the allocation * @start: start of the allowed range for the allocation * @end: end of the allowed range for the allocation * @mode: fine-tune the allocation search and placement * * This simply sets up the scanning routines with the parameters for the desired * hole. * * Warning: * As long as the scan list is non-empty, no other operations than * adding/removing nodes to/from the scan list are allowed. */ void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, struct drm_mm *mm, u64 size, u64 alignment, unsigned long color, u64 start, u64 end, enum drm_mm_insert_mode mode) { DRM_MM_BUG_ON(start >= end); DRM_MM_BUG_ON(!size || size > end - start); DRM_MM_BUG_ON(mm->scan_active); scan->mm = mm; if (alignment <= 1) alignment = 0; scan->color = color; scan->alignment = alignment; scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; scan->size = size; scan->mode = mode; DRM_MM_BUG_ON(end <= start); scan->range_start = start; scan->range_end = end; scan->hit_start = U64_MAX; scan->hit_end = 0; } EXPORT_SYMBOL(drm_mm_scan_init_with_range); /** * drm_mm_scan_add_block - add a node to the scan list * @scan: the active drm_mm scanner * @node: drm_mm_node to add * * Add a node to the scan list that might be freed to make space for the desired * hole. * * Returns: * True if a hole has been found, false otherwise. */ bool drm_mm_scan_add_block(struct drm_mm_scan *scan, struct drm_mm_node *node) { struct drm_mm *mm = scan->mm; struct drm_mm_node *hole; u64 hole_start, hole_end; u64 col_start, col_end; u64 adj_start, adj_end; DRM_MM_BUG_ON(node->mm != mm); DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); mm->scan_active++; /* Remove this block from the node_list so that we enlarge the hole * (distance between the end of our previous node and the start of * or next), without poisoning the link so that we can restore it * later in drm_mm_scan_remove_block(). */ hole = list_prev_entry(node, node_list); DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); __list_del_entry(&node->node_list); hole_start = __drm_mm_hole_node_start(hole); hole_end = __drm_mm_hole_node_end(hole); col_start = hole_start; col_end = hole_end; if (mm->color_adjust) mm->color_adjust(hole, scan->color, &col_start, &col_end); adj_start = max(col_start, scan->range_start); adj_end = min(col_end, scan->range_end); if (adj_end <= adj_start || adj_end - adj_start < scan->size) return false; if (scan->mode == DRM_MM_INSERT_HIGH) adj_start = adj_end - scan->size; if (scan->alignment) { u64 rem; if (likely(scan->remainder_mask)) rem = adj_start & scan->remainder_mask; else div64_u64_rem(adj_start, scan->alignment, &rem); if (rem) { adj_start -= rem; if (scan->mode != DRM_MM_INSERT_HIGH) adj_start += scan->alignment; if (adj_start < max(col_start, scan->range_start) || min(col_end, scan->range_end) - adj_start < scan->size) return false; if (adj_end <= adj_start || adj_end - adj_start < scan->size) return false; } } scan->hit_start = adj_start; scan->hit_end = adj_start + scan->size; DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); DRM_MM_BUG_ON(scan->hit_start < hole_start); DRM_MM_BUG_ON(scan->hit_end > hole_end); return true; } EXPORT_SYMBOL(drm_mm_scan_add_block); /** * drm_mm_scan_remove_block - remove a node from the scan list * @scan: the active drm_mm scanner * @node: drm_mm_node to remove * * Nodes **must** be removed in exactly the reverse order from the scan list as * they have been added (e.g. using list_add() as they are added and then * list_for_each() over that eviction list to remove), otherwise the internal * state of the memory manager will be corrupted. * * When the scan list is empty, the selected memory nodes can be freed. An * immediately following drm_mm_insert_node_in_range_generic() or one of the * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return * the just freed block (because it's at the top of the free_stack list). * * Returns: * True if this block should be evicted, false otherwise. Will always * return false when no hole has been found. */ bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, struct drm_mm_node *node) { struct drm_mm_node *prev_node; DRM_MM_BUG_ON(node->mm != scan->mm); DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); DRM_MM_BUG_ON(!node->mm->scan_active); node->mm->scan_active--; /* During drm_mm_scan_add_block() we decoupled this node leaving * its pointers intact. Now that the caller is walking back along * the eviction list we can restore this block into its rightful * place on the full node_list. To confirm that the caller is walking * backwards correctly we check that prev_node->next == node->next, * i.e. both believe the same node should be on the other side of the * hole. */ prev_node = list_prev_entry(node, node_list); DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != list_next_entry(node, node_list)); list_add(&node->node_list, &prev_node->node_list); return (node->start + node->size > scan->hit_start && node->start < scan->hit_end); } EXPORT_SYMBOL(drm_mm_scan_remove_block); /** * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole * @scan: drm_mm scan with target hole * * After completing an eviction scan and removing the selected nodes, we may * need to remove a few more nodes from either side of the target hole if * mm.color_adjust is being used. * * Returns: * A node to evict, or NULL if there are no overlapping nodes. */ struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) { struct drm_mm *mm = scan->mm; struct drm_mm_node *hole; u64 hole_start, hole_end; DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); if (!mm->color_adjust) return NULL; /* * The hole found during scanning should ideally be the first element * in the hole_stack list, but due to side-effects in the driver it * may not be. */ list_for_each_entry(hole, &mm->hole_stack, hole_stack) { hole_start = __drm_mm_hole_node_start(hole); hole_end = hole_start + hole->hole_size; if (hole_start <= scan->hit_start && hole_end >= scan->hit_end) break; } /* We should only be called after we found the hole previously */ DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); if (unlikely(&hole->hole_stack == &mm->hole_stack)) return NULL; DRM_MM_BUG_ON(hole_start > scan->hit_start); DRM_MM_BUG_ON(hole_end < scan->hit_end); mm->color_adjust(hole, scan->color, &hole_start, &hole_end); if (hole_start > scan->hit_start) return hole; if (hole_end < scan->hit_end) return list_next_entry(hole, node_list); return NULL; } EXPORT_SYMBOL(drm_mm_scan_color_evict); /** * drm_mm_init - initialize a drm-mm allocator * @mm: the drm_mm structure to initialize * @start: start of the range managed by @mm * @size: end of the range managed by @mm * * Note that @mm must be cleared to 0 before calling this function. */ void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) { DRM_MM_BUG_ON(start + size <= start); mm->color_adjust = NULL; INIT_LIST_HEAD(&mm->hole_stack); mm->interval_tree = RB_ROOT_CACHED; mm->holes_size = RB_ROOT_CACHED; mm->holes_addr = RB_ROOT; /* Clever trick to avoid a special case in the free hole tracking. */ INIT_LIST_HEAD(&mm->head_node.node_list); mm->head_node.flags = 0; mm->head_node.mm = mm; mm->head_node.start = start + size; mm->head_node.size = -size; add_hole(&mm->head_node); mm->scan_active = 0; } EXPORT_SYMBOL(drm_mm_init); /** * drm_mm_takedown - clean up a drm_mm allocator * @mm: drm_mm allocator to clean up * * Note that it is a bug to call this function on an allocator which is not * clean. */ void drm_mm_takedown(struct drm_mm *mm) { if (WARN(!drm_mm_clean(mm), "Memory manager not clean during takedown.\n")) show_leaks(mm); } EXPORT_SYMBOL(drm_mm_takedown); static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) { u64 start, size; size = entry->hole_size; if (size) { start = drm_mm_hole_node_start(entry); drm_printf(p, "%#018llx-%#018llx: %llu: free\n", start, start + size, size); } return size; } /** * drm_mm_print - print allocator state * @mm: drm_mm allocator to print * @p: DRM printer to use */ void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) { const struct drm_mm_node *entry; u64 total_used = 0, total_free = 0, total = 0; total_free += drm_mm_dump_hole(p, &mm->head_node); drm_mm_for_each_node(entry, mm) { drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, entry->start + entry->size, entry->size); total_used += entry->size; total_free += drm_mm_dump_hole(p, entry); } total = total_free + total_used; drm_printf(p, "total: %llu, used %llu free %llu\n", total, total_used, total_free); } EXPORT_SYMBOL(drm_mm_print); |