Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 | /* * helpers.c -- Voltage/Current Regulator framework helper functions. * * Copyright 2007, 2008 Wolfson Microelectronics PLC. * Copyright 2008 SlimLogic Ltd. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/kernel.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/regulator/driver.h> #include <linux/module.h> /** * regulator_is_enabled_regmap - standard is_enabled() for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their is_enabled operation, saving some code. */ int regulator_is_enabled_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); if (ret != 0) return ret; val &= rdev->desc->enable_mask; if (rdev->desc->enable_is_inverted) { if (rdev->desc->enable_val) return val != rdev->desc->enable_val; return val == 0; } else { if (rdev->desc->enable_val) return val == rdev->desc->enable_val; return val != 0; } } EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); /** * regulator_enable_regmap - standard enable() for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their enable() operation, saving some code. */ int regulator_enable_regmap(struct regulator_dev *rdev) { unsigned int val; if (rdev->desc->enable_is_inverted) { val = rdev->desc->disable_val; } else { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, rdev->desc->enable_mask, val); } EXPORT_SYMBOL_GPL(regulator_enable_regmap); /** * regulator_disable_regmap - standard disable() for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their disable() operation, saving some code. */ int regulator_disable_regmap(struct regulator_dev *rdev) { unsigned int val; if (rdev->desc->enable_is_inverted) { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } else { val = rdev->desc->disable_val; } return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, rdev->desc->enable_mask, val); } EXPORT_SYMBOL_GPL(regulator_disable_regmap); /** * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their get_voltage_vsel operation, saving some code. */ int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); if (ret != 0) return ret; val &= rdev->desc->vsel_mask; val >>= ffs(rdev->desc->vsel_mask) - 1; return val; } EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); /** * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users * * @rdev: regulator to operate on * @sel: Selector to set * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their set_voltage_vsel operation, saving some code. */ int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) { int ret; sel <<= ffs(rdev->desc->vsel_mask) - 1; ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, rdev->desc->vsel_mask, sel); if (ret) return ret; if (rdev->desc->apply_bit) ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, rdev->desc->apply_bit, rdev->desc->apply_bit); return ret; } EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); /** * regulator_map_voltage_iterate - map_voltage() based on list_voltage() * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers implementing set_voltage_sel() and list_voltage() can use * this as their map_voltage() operation. It will find a suitable * voltage by calling list_voltage() until it gets something in bounds * for the requested voltages. */ int regulator_map_voltage_iterate(struct regulator_dev *rdev, int min_uV, int max_uV) { int best_val = INT_MAX; int selector = 0; int i, ret; /* Find the smallest voltage that falls within the specified * range. */ for (i = 0; i < rdev->desc->n_voltages; i++) { ret = rdev->desc->ops->list_voltage(rdev, i); if (ret < 0) continue; if (ret < best_val && ret >= min_uV && ret <= max_uV) { best_val = ret; selector = i; } } if (best_val != INT_MAX) return selector; else return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); /** * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers that have ascendant voltage list can use this as their * map_voltage() operation. */ int regulator_map_voltage_ascend(struct regulator_dev *rdev, int min_uV, int max_uV) { int i, ret; for (i = 0; i < rdev->desc->n_voltages; i++) { ret = rdev->desc->ops->list_voltage(rdev, i); if (ret < 0) continue; if (ret > max_uV) break; if (ret >= min_uV && ret <= max_uV) return i; } return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); /** * regulator_map_voltage_linear - map_voltage() for simple linear mappings * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers providing min_uV and uV_step in their regulator_desc can * use this as their map_voltage() operation. */ int regulator_map_voltage_linear(struct regulator_dev *rdev, int min_uV, int max_uV) { int ret, voltage; /* Allow uV_step to be 0 for fixed voltage */ if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) return 0; else return -EINVAL; } if (!rdev->desc->uV_step) { BUG_ON(!rdev->desc->uV_step); return -EINVAL; } if (min_uV < rdev->desc->min_uV) min_uV = rdev->desc->min_uV; ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); if (ret < 0) return ret; ret += rdev->desc->linear_min_sel; /* Map back into a voltage to verify we're still in bounds */ voltage = rdev->desc->ops->list_voltage(rdev, ret); if (voltage < min_uV || voltage > max_uV) return -EINVAL; return ret; } EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); /** * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges * * @rdev: Regulator to operate on * @min_uV: Lower bound for voltage * @max_uV: Upper bound for voltage * * Drivers providing linear_ranges in their descriptor can use this as * their map_voltage() callback. */ int regulator_map_voltage_linear_range(struct regulator_dev *rdev, int min_uV, int max_uV) { const struct regulator_linear_range *range; int ret = -EINVAL; int voltage, i; if (!rdev->desc->n_linear_ranges) { BUG_ON(!rdev->desc->n_linear_ranges); return -EINVAL; } for (i = 0; i < rdev->desc->n_linear_ranges; i++) { int linear_max_uV; range = &rdev->desc->linear_ranges[i]; linear_max_uV = range->min_uV + (range->max_sel - range->min_sel) * range->uV_step; if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) continue; if (min_uV <= range->min_uV) min_uV = range->min_uV; /* range->uV_step == 0 means fixed voltage range */ if (range->uV_step == 0) { ret = 0; } else { ret = DIV_ROUND_UP(min_uV - range->min_uV, range->uV_step); if (ret < 0) return ret; } ret += range->min_sel; break; } if (i == rdev->desc->n_linear_ranges) return -EINVAL; /* Map back into a voltage to verify we're still in bounds */ voltage = rdev->desc->ops->list_voltage(rdev, ret); if (voltage < min_uV || voltage > max_uV) return -EINVAL; return ret; } EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range); /** * regulator_list_voltage_linear - List voltages with simple calculation * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * Regulators with a simple linear mapping between voltages and * selectors can set min_uV and uV_step in the regulator descriptor * and then use this function as their list_voltage() operation, */ int regulator_list_voltage_linear(struct regulator_dev *rdev, unsigned int selector) { if (selector >= rdev->desc->n_voltages) return -EINVAL; if (selector < rdev->desc->linear_min_sel) return 0; selector -= rdev->desc->linear_min_sel; return rdev->desc->min_uV + (rdev->desc->uV_step * selector); } EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); /** * regulator_list_voltage_linear_range - List voltages for linear ranges * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * Regulators with a series of simple linear mappings between voltages * and selectors can set linear_ranges in the regulator descriptor and * then use this function as their list_voltage() operation, */ int regulator_list_voltage_linear_range(struct regulator_dev *rdev, unsigned int selector) { const struct regulator_linear_range *range; int i; if (!rdev->desc->n_linear_ranges) { BUG_ON(!rdev->desc->n_linear_ranges); return -EINVAL; } for (i = 0; i < rdev->desc->n_linear_ranges; i++) { range = &rdev->desc->linear_ranges[i]; if (!(selector >= range->min_sel && selector <= range->max_sel)) continue; selector -= range->min_sel; return range->min_uV + (range->uV_step * selector); } return -EINVAL; } EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range); /** * regulator_list_voltage_table - List voltages with table based mapping * * @rdev: Regulator device * @selector: Selector to convert into a voltage * * Regulators with table based mapping between voltages and * selectors can set volt_table in the regulator descriptor * and then use this function as their list_voltage() operation. */ int regulator_list_voltage_table(struct regulator_dev *rdev, unsigned int selector) { if (!rdev->desc->volt_table) { BUG_ON(!rdev->desc->volt_table); return -EINVAL; } if (selector >= rdev->desc->n_voltages) return -EINVAL; return rdev->desc->volt_table[selector]; } EXPORT_SYMBOL_GPL(regulator_list_voltage_table); /** * regulator_set_bypass_regmap - Default set_bypass() using regmap * * @rdev: device to operate on. * @enable: state to set. */ int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) { unsigned int val; if (enable) { val = rdev->desc->bypass_val_on; if (!val) val = rdev->desc->bypass_mask; } else { val = rdev->desc->bypass_val_off; } return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, rdev->desc->bypass_mask, val); } EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); /** * regulator_get_bypass_regmap - Default get_bypass() using regmap * * @rdev: device to operate on. * @enable: current state. */ int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); if (ret != 0) return ret; *enable = (val & rdev->desc->bypass_mask) == rdev->desc->bypass_val_on; return 0; } EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); /** * regulator_set_active_discharge_regmap - Default set_active_discharge() * using regmap * * @rdev: device to operate on. * @enable: state to set, 0 to disable and 1 to enable. */ int regulator_set_active_discharge_regmap(struct regulator_dev *rdev, bool enable) { unsigned int val; if (enable) val = rdev->desc->active_discharge_on; else val = rdev->desc->active_discharge_off; return regmap_update_bits(rdev->regmap, rdev->desc->active_discharge_reg, rdev->desc->active_discharge_mask, val); } EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap); |