Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | /* * w1_ds28e04.c - w1 family 1C (DS28E04) driver * * Copyright (c) 2012 Markus Franke <franke.m@sebakmt.com> * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/device.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/crc16.h> #include <linux/uaccess.h> #define CRC16_INIT 0 #define CRC16_VALID 0xb001 #include "../w1.h" #include "../w1_int.h" #include "../w1_family.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Markus Franke <franke.m@sebakmt.com>, <franm@hrz.tu-chemnitz.de>"); MODULE_DESCRIPTION("w1 family 1C driver for DS28E04, 4kb EEPROM and PIO"); MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_DS28E04)); /* Allow the strong pullup to be disabled, but default to enabled. * If it was disabled a parasite powered device might not get the required * current to copy the data from the scratchpad to EEPROM. If it is enabled * parasite powered devices have a better chance of getting the current * required. */ static int w1_strong_pullup = 1; module_param_named(strong_pullup, w1_strong_pullup, int, 0); /* enable/disable CRC checking on DS28E04-100 memory accesses */ static char w1_enable_crccheck = 1; #define W1_EEPROM_SIZE 512 #define W1_PAGE_COUNT 16 #define W1_PAGE_SIZE 32 #define W1_PAGE_BITS 5 #define W1_PAGE_MASK 0x1F #define W1_F1C_READ_EEPROM 0xF0 #define W1_F1C_WRITE_SCRATCH 0x0F #define W1_F1C_READ_SCRATCH 0xAA #define W1_F1C_COPY_SCRATCH 0x55 #define W1_F1C_ACCESS_WRITE 0x5A #define W1_1C_REG_LOGIC_STATE 0x220 struct w1_f1C_data { u8 memory[W1_EEPROM_SIZE]; u32 validcrc; }; /** * Check the file size bounds and adjusts count as needed. * This would not be needed if the file size didn't reset to 0 after a write. */ static inline size_t w1_f1C_fix_count(loff_t off, size_t count, size_t size) { if (off > size) return 0; if ((off + count) > size) return size - off; return count; } static int w1_f1C_refresh_block(struct w1_slave *sl, struct w1_f1C_data *data, int block) { u8 wrbuf[3]; int off = block * W1_PAGE_SIZE; if (data->validcrc & (1 << block)) return 0; if (w1_reset_select_slave(sl)) { data->validcrc = 0; return -EIO; } wrbuf[0] = W1_F1C_READ_EEPROM; wrbuf[1] = off & 0xff; wrbuf[2] = off >> 8; w1_write_block(sl->master, wrbuf, 3); w1_read_block(sl->master, &data->memory[off], W1_PAGE_SIZE); /* cache the block if the CRC is valid */ if (crc16(CRC16_INIT, &data->memory[off], W1_PAGE_SIZE) == CRC16_VALID) data->validcrc |= (1 << block); return 0; } static int w1_f1C_read(struct w1_slave *sl, int addr, int len, char *data) { u8 wrbuf[3]; /* read directly from the EEPROM */ if (w1_reset_select_slave(sl)) return -EIO; wrbuf[0] = W1_F1C_READ_EEPROM; wrbuf[1] = addr & 0xff; wrbuf[2] = addr >> 8; w1_write_block(sl->master, wrbuf, sizeof(wrbuf)); return w1_read_block(sl->master, data, len); } static ssize_t eeprom_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct w1_slave *sl = kobj_to_w1_slave(kobj); struct w1_f1C_data *data = sl->family_data; int i, min_page, max_page; count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE); if (count == 0) return 0; mutex_lock(&sl->master->mutex); if (w1_enable_crccheck) { min_page = (off >> W1_PAGE_BITS); max_page = (off + count - 1) >> W1_PAGE_BITS; for (i = min_page; i <= max_page; i++) { if (w1_f1C_refresh_block(sl, data, i)) { count = -EIO; goto out_up; } } memcpy(buf, &data->memory[off], count); } else { count = w1_f1C_read(sl, off, count, buf); } out_up: mutex_unlock(&sl->master->mutex); return count; } /** * Writes to the scratchpad and reads it back for verification. * Then copies the scratchpad to EEPROM. * The data must be on one page. * The master must be locked. * * @param sl The slave structure * @param addr Address for the write * @param len length must be <= (W1_PAGE_SIZE - (addr & W1_PAGE_MASK)) * @param data The data to write * @return 0=Success -1=failure */ static int w1_f1C_write(struct w1_slave *sl, int addr, int len, const u8 *data) { u8 wrbuf[4]; u8 rdbuf[W1_PAGE_SIZE + 3]; u8 es = (addr + len - 1) & 0x1f; unsigned int tm = 10; int i; struct w1_f1C_data *f1C = sl->family_data; /* Write the data to the scratchpad */ if (w1_reset_select_slave(sl)) return -1; wrbuf[0] = W1_F1C_WRITE_SCRATCH; wrbuf[1] = addr & 0xff; wrbuf[2] = addr >> 8; w1_write_block(sl->master, wrbuf, 3); w1_write_block(sl->master, data, len); /* Read the scratchpad and verify */ if (w1_reset_select_slave(sl)) return -1; w1_write_8(sl->master, W1_F1C_READ_SCRATCH); w1_read_block(sl->master, rdbuf, len + 3); /* Compare what was read against the data written */ if ((rdbuf[0] != wrbuf[1]) || (rdbuf[1] != wrbuf[2]) || (rdbuf[2] != es) || (memcmp(data, &rdbuf[3], len) != 0)) return -1; /* Copy the scratchpad to EEPROM */ if (w1_reset_select_slave(sl)) return -1; wrbuf[0] = W1_F1C_COPY_SCRATCH; wrbuf[3] = es; for (i = 0; i < sizeof(wrbuf); ++i) { /* issue 10ms strong pullup (or delay) on the last byte for writing the data from the scratchpad to EEPROM */ if (w1_strong_pullup && i == sizeof(wrbuf)-1) w1_next_pullup(sl->master, tm); w1_write_8(sl->master, wrbuf[i]); } if (!w1_strong_pullup) msleep(tm); if (w1_enable_crccheck) { /* invalidate cached data */ f1C->validcrc &= ~(1 << (addr >> W1_PAGE_BITS)); } /* Reset the bus to wake up the EEPROM (this may not be needed) */ w1_reset_bus(sl->master); return 0; } static ssize_t eeprom_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct w1_slave *sl = kobj_to_w1_slave(kobj); int addr, len, idx; count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE); if (count == 0) return 0; if (w1_enable_crccheck) { /* can only write full blocks in cached mode */ if ((off & W1_PAGE_MASK) || (count & W1_PAGE_MASK)) { dev_err(&sl->dev, "invalid offset/count off=%d cnt=%zd\n", (int)off, count); return -EINVAL; } /* make sure the block CRCs are valid */ for (idx = 0; idx < count; idx += W1_PAGE_SIZE) { if (crc16(CRC16_INIT, &buf[idx], W1_PAGE_SIZE) != CRC16_VALID) { dev_err(&sl->dev, "bad CRC at offset %d\n", (int)off); return -EINVAL; } } } mutex_lock(&sl->master->mutex); /* Can only write data to one page at a time */ idx = 0; while (idx < count) { addr = off + idx; len = W1_PAGE_SIZE - (addr & W1_PAGE_MASK); if (len > (count - idx)) len = count - idx; if (w1_f1C_write(sl, addr, len, &buf[idx]) < 0) { count = -EIO; goto out_up; } idx += len; } out_up: mutex_unlock(&sl->master->mutex); return count; } static BIN_ATTR_RW(eeprom, W1_EEPROM_SIZE); static ssize_t pio_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct w1_slave *sl = kobj_to_w1_slave(kobj); int ret; /* check arguments */ if (off != 0 || count != 1 || buf == NULL) return -EINVAL; mutex_lock(&sl->master->mutex); ret = w1_f1C_read(sl, W1_1C_REG_LOGIC_STATE, count, buf); mutex_unlock(&sl->master->mutex); return ret; } static ssize_t pio_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct w1_slave *sl = kobj_to_w1_slave(kobj); u8 wrbuf[3]; u8 ack; /* check arguments */ if (off != 0 || count != 1 || buf == NULL) return -EINVAL; mutex_lock(&sl->master->mutex); /* Write the PIO data */ if (w1_reset_select_slave(sl)) { mutex_unlock(&sl->master->mutex); return -1; } /* set bit 7..2 to value '1' */ *buf = *buf | 0xFC; wrbuf[0] = W1_F1C_ACCESS_WRITE; wrbuf[1] = *buf; wrbuf[2] = ~(*buf); w1_write_block(sl->master, wrbuf, 3); w1_read_block(sl->master, &ack, sizeof(ack)); mutex_unlock(&sl->master->mutex); /* check for acknowledgement */ if (ack != 0xAA) return -EIO; return count; } static BIN_ATTR_RW(pio, 1); static ssize_t crccheck_show(struct device *dev, struct device_attribute *attr, char *buf) { if (put_user(w1_enable_crccheck + 0x30, buf)) return -EFAULT; return sizeof(w1_enable_crccheck); } static ssize_t crccheck_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { char val; if (count != 1 || !buf) return -EINVAL; if (get_user(val, buf)) return -EFAULT; /* convert to decimal */ val = val - 0x30; if (val != 0 && val != 1) return -EINVAL; /* set the new value */ w1_enable_crccheck = val; return sizeof(w1_enable_crccheck); } static DEVICE_ATTR_RW(crccheck); static struct attribute *w1_f1C_attrs[] = { &dev_attr_crccheck.attr, NULL, }; static struct bin_attribute *w1_f1C_bin_attrs[] = { &bin_attr_eeprom, &bin_attr_pio, NULL, }; static const struct attribute_group w1_f1C_group = { .attrs = w1_f1C_attrs, .bin_attrs = w1_f1C_bin_attrs, }; static const struct attribute_group *w1_f1C_groups[] = { &w1_f1C_group, NULL, }; static int w1_f1C_add_slave(struct w1_slave *sl) { struct w1_f1C_data *data = NULL; if (w1_enable_crccheck) { data = kzalloc(sizeof(struct w1_f1C_data), GFP_KERNEL); if (!data) return -ENOMEM; sl->family_data = data; } return 0; } static void w1_f1C_remove_slave(struct w1_slave *sl) { kfree(sl->family_data); sl->family_data = NULL; } static struct w1_family_ops w1_f1C_fops = { .add_slave = w1_f1C_add_slave, .remove_slave = w1_f1C_remove_slave, .groups = w1_f1C_groups, }; static struct w1_family w1_family_1C = { .fid = W1_FAMILY_DS28E04, .fops = &w1_f1C_fops, }; static int __init w1_f1C_init(void) { return w1_register_family(&w1_family_1C); } static void __exit w1_f1C_fini(void) { w1_unregister_family(&w1_family_1C); } module_init(w1_f1C_init); module_exit(w1_f1C_fini); |