Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | /* -*- linux-c -*- ------------------------------------------------------- * * * Copyright 2002-2007 H. Peter Anvin - All Rights Reserved * * This file is part of the Linux kernel, and is made available under * the terms of the GNU General Public License version 2 or (at your * option) any later version; incorporated herein by reference. * * ----------------------------------------------------------------------- */ /* * raid6test.c * * Test RAID-6 recovery with various algorithms */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <linux/raid/pq.h> #define NDISKS 16 /* Including P and Q */ const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); struct raid6_calls raid6_call; char *dataptrs[NDISKS]; char data[NDISKS][PAGE_SIZE]; char recovi[PAGE_SIZE], recovj[PAGE_SIZE]; static void makedata(int start, int stop) { int i, j; for (i = start; i <= stop; i++) { for (j = 0; j < PAGE_SIZE; j++) data[i][j] = rand(); dataptrs[i] = data[i]; } } static char disk_type(int d) { switch (d) { case NDISKS-2: return 'P'; case NDISKS-1: return 'Q'; default: return 'D'; } } static int test_disks(int i, int j) { int erra, errb; memset(recovi, 0xf0, PAGE_SIZE); memset(recovj, 0xba, PAGE_SIZE); dataptrs[i] = recovi; dataptrs[j] = recovj; raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs); erra = memcmp(data[i], recovi, PAGE_SIZE); errb = memcmp(data[j], recovj, PAGE_SIZE); if (i < NDISKS-2 && j == NDISKS-1) { /* We don't implement the DQ failure scenario, since it's equivalent to a RAID-5 failure (XOR, then recompute Q) */ erra = errb = 0; } else { printf("algo=%-8s faila=%3d(%c) failb=%3d(%c) %s\n", raid6_call.name, i, disk_type(i), j, disk_type(j), (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB"); } dataptrs[i] = data[i]; dataptrs[j] = data[j]; return erra || errb; } int main(int argc, char *argv[]) { const struct raid6_calls *const *algo; const struct raid6_recov_calls *const *ra; int i, j, p1, p2; int err = 0; makedata(0, NDISKS-1); for (ra = raid6_recov_algos; *ra; ra++) { if ((*ra)->valid && !(*ra)->valid()) continue; raid6_2data_recov = (*ra)->data2; raid6_datap_recov = (*ra)->datap; printf("using recovery %s\n", (*ra)->name); for (algo = raid6_algos; *algo; algo++) { if ((*algo)->valid && !(*algo)->valid()) continue; raid6_call = **algo; /* Nuke syndromes */ memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE); /* Generate assumed good syndrome */ raid6_call.gen_syndrome(NDISKS, PAGE_SIZE, (void **)&dataptrs); for (i = 0; i < NDISKS-1; i++) for (j = i+1; j < NDISKS; j++) err += test_disks(i, j); if (!raid6_call.xor_syndrome) continue; for (p1 = 0; p1 < NDISKS-2; p1++) for (p2 = p1; p2 < NDISKS-2; p2++) { /* Simulate rmw run */ raid6_call.xor_syndrome(NDISKS, p1, p2, PAGE_SIZE, (void **)&dataptrs); makedata(p1, p2); raid6_call.xor_syndrome(NDISKS, p1, p2, PAGE_SIZE, (void **)&dataptrs); for (i = 0; i < NDISKS-1; i++) for (j = i+1; j < NDISKS; j++) err += test_disks(i, j); } } printf("\n"); } printf("\n"); /* Pick the best algorithm test */ raid6_select_algo(); if (err) printf("\n*** ERRORS FOUND ***\n"); return err; } |