Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | /* * lib/reed_solomon/decode_rs.c * * Overview: * Generic Reed Solomon encoder / decoder library * * Copyright 2002, Phil Karn, KA9Q * May be used under the terms of the GNU General Public License (GPL) * * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) * * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ * */ /* Generic data width independent code which is included by the * wrappers. */ { int deg_lambda, el, deg_omega; int i, j, r, k, pad; int nn = rs->nn; int nroots = rs->nroots; int fcr = rs->fcr; int prim = rs->prim; int iprim = rs->iprim; uint16_t *alpha_to = rs->alpha_to; uint16_t *index_of = rs->index_of; uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error; /* Err+Eras Locator poly and syndrome poly The maximum value * of nroots is 8. So the necessary stack size will be about * 220 bytes max. */ uint16_t lambda[nroots + 1], syn[nroots]; uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1]; uint16_t root[nroots], reg[nroots + 1], loc[nroots]; int count = 0; uint16_t msk = (uint16_t) rs->nn; /* Check length parameter for validity */ pad = nn - nroots - len; BUG_ON(pad < 0 || pad >= nn); /* Does the caller provide the syndrome ? */ if (s != NULL) { for (i = 0; i < nroots; i++) { /* The syndrome is in index form, * so nn represents zero */ if (s[i] != nn) goto decode; } /* syndrome is zero, no errors to correct */ return 0; } /* form the syndromes; i.e., evaluate data(x) at roots of * g(x) */ for (i = 0; i < nroots; i++) syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk; for (j = 1; j < len; j++) { for (i = 0; i < nroots; i++) { if (syn[i] == 0) { syn[i] = (((uint16_t) data[j]) ^ invmsk) & msk; } else { syn[i] = ((((uint16_t) data[j]) ^ invmsk) & msk) ^ alpha_to[rs_modnn(rs, index_of[syn[i]] + (fcr + i) * prim)]; } } } for (j = 0; j < nroots; j++) { for (i = 0; i < nroots; i++) { if (syn[i] == 0) { syn[i] = ((uint16_t) par[j]) & msk; } else { syn[i] = (((uint16_t) par[j]) & msk) ^ alpha_to[rs_modnn(rs, index_of[syn[i]] + (fcr+i)*prim)]; } } } s = syn; /* Convert syndromes to index form, checking for nonzero condition */ syn_error = 0; for (i = 0; i < nroots; i++) { syn_error |= s[i]; s[i] = index_of[s[i]]; } if (!syn_error) { /* if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ count = 0; goto finish; } decode: memset(&lambda[1], 0, nroots * sizeof(lambda[0])); lambda[0] = 1; if (no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = alpha_to[rs_modnn(rs, prim * (nn - 1 - (eras_pos[0] + pad)))]; for (i = 1; i < no_eras; i++) { u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad))); for (j = i + 1; j > 0; j--) { tmp = index_of[lambda[j - 1]]; if (tmp != nn) { lambda[j] ^= alpha_to[rs_modnn(rs, u + tmp)]; } } } } for (i = 0; i < nroots + 1; i++) b[i] = index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while (++r <= nroots) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++) { if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { discr_r ^= alpha_to[rs_modnn(rs, index_of[lambda[i]] + s[r - i - 1])]; } } discr_r = index_of[discr_r]; /* Index form */ if (discr_r == nn) { /* 2 lines below: B(x) <-- x*B(x) */ memmove (&b[1], b, nroots * sizeof (b[0])); b[0] = nn; } else { /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0; i < nroots; i++) { if (b[i] != nn) { t[i + 1] = lambda[i + 1] ^ alpha_to[rs_modnn(rs, discr_r + b[i])]; } else t[i + 1] = lambda[i + 1]; } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= nroots; i++) { b[i] = (lambda[i] == 0) ? nn : rs_modnn(rs, index_of[lambda[i]] - discr_r + nn); } } else { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1], b, nroots * sizeof(b[0])); b[0] = nn; } memcpy(lambda, t, (nroots + 1) * sizeof(t[0])); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for (i = 0; i < nroots + 1; i++) { lambda[i] = index_of[lambda[i]]; if (lambda[i] != nn) deg_lambda = i; } /* Find roots of error+erasure locator polynomial by Chien search */ memcpy(®[1], &lambda[1], nroots * sizeof(reg[0])); count = 0; /* Number of roots of lambda(x) */ for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) { q = 1; /* lambda[0] is always 0 */ for (j = deg_lambda; j > 0; j--) { if (reg[j] != nn) { reg[j] = rs_modnn(rs, reg[j] + j); q ^= alpha_to[reg[j]]; } } if (q != 0) continue; /* Not a root */ /* store root (index-form) and error location number */ root[count] = i; loc[count] = k; /* If we've already found max possible roots, * abort the search to save time */ if (++count == deg_lambda) break; } if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ count = -EBADMSG; goto finish; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**nroots). in index form. Also find deg(omega). */ deg_omega = deg_lambda - 1; for (i = 0; i <= deg_omega; i++) { tmp = 0; for (j = i; j >= 0; j--) { if ((s[i - j] != nn) && (lambda[j] != nn)) tmp ^= alpha_to[rs_modnn(rs, s[i - j] + lambda[j])]; } omega[i] = index_of[tmp]; } /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count - 1; j >= 0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != nn) num1 ^= alpha_to[rs_modnn(rs, omega[i] + i * root[j])]; } num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; den = 0; /* lambda[i+1] for i even is the formal derivative * lambda_pr of lambda[i] */ for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { if (lambda[i + 1] != nn) { den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + i * root[j])]; } } /* Apply error to data */ if (num1 != 0 && loc[j] >= pad) { uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] + index_of[num2] + nn - index_of[den])]; /* Store the error correction pattern, if a * correction buffer is available */ if (corr) { corr[j] = cor; } else { /* If a data buffer is given and the * error is inside the message, * correct it */ if (data && (loc[j] < (nn - nroots))) data[loc[j] - pad] ^= cor; } } } finish: if (eras_pos != NULL) { for (i = 0; i < count; i++) eras_pos[i] = loc[i] - pad; } return count; } |