Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 | /* * Primary bucket allocation code * * Copyright 2012 Google, Inc. * * Allocation in bcache is done in terms of buckets: * * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in * btree pointers - they must match for the pointer to be considered valid. * * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a * bucket simply by incrementing its gen. * * The gens (along with the priorities; it's really the gens are important but * the code is named as if it's the priorities) are written in an arbitrary list * of buckets on disk, with a pointer to them in the journal header. * * When we invalidate a bucket, we have to write its new gen to disk and wait * for that write to complete before we use it - otherwise after a crash we * could have pointers that appeared to be good but pointed to data that had * been overwritten. * * Since the gens and priorities are all stored contiguously on disk, we can * batch this up: We fill up the free_inc list with freshly invalidated buckets, * call prio_write(), and when prio_write() finishes we pull buckets off the * free_inc list and optionally discard them. * * free_inc isn't the only freelist - if it was, we'd often to sleep while * priorities and gens were being written before we could allocate. c->free is a * smaller freelist, and buckets on that list are always ready to be used. * * If we've got discards enabled, that happens when a bucket moves from the * free_inc list to the free list. * * There is another freelist, because sometimes we have buckets that we know * have nothing pointing into them - these we can reuse without waiting for * priorities to be rewritten. These come from freed btree nodes and buckets * that garbage collection discovered no longer had valid keys pointing into * them (because they were overwritten). That's the unused list - buckets on the * unused list move to the free list, optionally being discarded in the process. * * It's also important to ensure that gens don't wrap around - with respect to * either the oldest gen in the btree or the gen on disk. This is quite * difficult to do in practice, but we explicitly guard against it anyways - if * a bucket is in danger of wrapping around we simply skip invalidating it that * time around, and we garbage collect or rewrite the priorities sooner than we * would have otherwise. * * bch_bucket_alloc() allocates a single bucket from a specific cache. * * bch_bucket_alloc_set() allocates one or more buckets from different caches * out of a cache set. * * free_some_buckets() drives all the processes described above. It's called * from bch_bucket_alloc() and a few other places that need to make sure free * buckets are ready. * * invalidate_buckets_(lru|fifo)() find buckets that are available to be * invalidated, and then invalidate them and stick them on the free_inc list - * in either lru or fifo order. */ #include "bcache.h" #include "btree.h" #include <linux/blkdev.h> #include <linux/freezer.h> #include <linux/kthread.h> #include <linux/random.h> #include <trace/events/bcache.h> /* Bucket heap / gen */ uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) { uint8_t ret = ++b->gen; ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); return ret; } void bch_rescale_priorities(struct cache_set *c, int sectors) { struct cache *ca; struct bucket *b; unsigned next = c->nbuckets * c->sb.bucket_size / 1024; unsigned i; int r; atomic_sub(sectors, &c->rescale); do { r = atomic_read(&c->rescale); if (r >= 0) return; } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); mutex_lock(&c->bucket_lock); c->min_prio = USHRT_MAX; for_each_cache(ca, c, i) for_each_bucket(b, ca) if (b->prio && b->prio != BTREE_PRIO && !atomic_read(&b->pin)) { b->prio--; c->min_prio = min(c->min_prio, b->prio); } mutex_unlock(&c->bucket_lock); } /* * Background allocation thread: scans for buckets to be invalidated, * invalidates them, rewrites prios/gens (marking them as invalidated on disk), * then optionally issues discard commands to the newly free buckets, then puts * them on the various freelists. */ static inline bool can_inc_bucket_gen(struct bucket *b) { return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; } bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) { BUG_ON(!ca->set->gc_mark_valid); return (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) && !atomic_read(&b->pin) && can_inc_bucket_gen(b); } void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) { lockdep_assert_held(&ca->set->bucket_lock); BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); if (GC_SECTORS_USED(b)) trace_bcache_invalidate(ca, b - ca->buckets); bch_inc_gen(ca, b); b->prio = INITIAL_PRIO; atomic_inc(&b->pin); } static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) { __bch_invalidate_one_bucket(ca, b); fifo_push(&ca->free_inc, b - ca->buckets); } /* * Determines what order we're going to reuse buckets, smallest bucket_prio() * first: we also take into account the number of sectors of live data in that * bucket, and in order for that multiply to make sense we have to scale bucket * * Thus, we scale the bucket priorities so that the bucket with the smallest * prio is worth 1/8th of what INITIAL_PRIO is worth. */ #define bucket_prio(b) \ ({ \ unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ \ (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ }) #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) static void invalidate_buckets_lru(struct cache *ca) { struct bucket *b; ssize_t i; ca->heap.used = 0; for_each_bucket(b, ca) { if (!bch_can_invalidate_bucket(ca, b)) continue; if (!heap_full(&ca->heap)) heap_add(&ca->heap, b, bucket_max_cmp); else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { ca->heap.data[0] = b; heap_sift(&ca->heap, 0, bucket_max_cmp); } } for (i = ca->heap.used / 2 - 1; i >= 0; --i) heap_sift(&ca->heap, i, bucket_min_cmp); while (!fifo_full(&ca->free_inc)) { if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { /* * We don't want to be calling invalidate_buckets() * multiple times when it can't do anything */ ca->invalidate_needs_gc = 1; wake_up_gc(ca->set); return; } bch_invalidate_one_bucket(ca, b); } } static void invalidate_buckets_fifo(struct cache *ca) { struct bucket *b; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { if (ca->fifo_last_bucket < ca->sb.first_bucket || ca->fifo_last_bucket >= ca->sb.nbuckets) ca->fifo_last_bucket = ca->sb.first_bucket; b = ca->buckets + ca->fifo_last_bucket++; if (bch_can_invalidate_bucket(ca, b)) bch_invalidate_one_bucket(ca, b); if (++checked >= ca->sb.nbuckets) { ca->invalidate_needs_gc = 1; wake_up_gc(ca->set); return; } } } static void invalidate_buckets_random(struct cache *ca) { struct bucket *b; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { size_t n; get_random_bytes(&n, sizeof(n)); n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); n += ca->sb.first_bucket; b = ca->buckets + n; if (bch_can_invalidate_bucket(ca, b)) bch_invalidate_one_bucket(ca, b); if (++checked >= ca->sb.nbuckets / 2) { ca->invalidate_needs_gc = 1; wake_up_gc(ca->set); return; } } } static void invalidate_buckets(struct cache *ca) { BUG_ON(ca->invalidate_needs_gc); switch (CACHE_REPLACEMENT(&ca->sb)) { case CACHE_REPLACEMENT_LRU: invalidate_buckets_lru(ca); break; case CACHE_REPLACEMENT_FIFO: invalidate_buckets_fifo(ca); break; case CACHE_REPLACEMENT_RANDOM: invalidate_buckets_random(ca); break; } } #define allocator_wait(ca, cond) \ do { \ while (1) { \ set_current_state(TASK_INTERRUPTIBLE); \ if (cond) \ break; \ \ mutex_unlock(&(ca)->set->bucket_lock); \ if (kthread_should_stop()) { \ set_current_state(TASK_RUNNING); \ return 0; \ } \ \ try_to_freeze(); \ schedule(); \ mutex_lock(&(ca)->set->bucket_lock); \ } \ __set_current_state(TASK_RUNNING); \ } while (0) static int bch_allocator_push(struct cache *ca, long bucket) { unsigned i; /* Prios/gens are actually the most important reserve */ if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) return true; for (i = 0; i < RESERVE_NR; i++) if (fifo_push(&ca->free[i], bucket)) return true; return false; } static int bch_allocator_thread(void *arg) { struct cache *ca = arg; mutex_lock(&ca->set->bucket_lock); while (1) { /* * First, we pull buckets off of the unused and free_inc lists, * possibly issue discards to them, then we add the bucket to * the free list: */ while (!fifo_empty(&ca->free_inc)) { long bucket; fifo_pop(&ca->free_inc, bucket); if (ca->discard) { mutex_unlock(&ca->set->bucket_lock); blkdev_issue_discard(ca->bdev, bucket_to_sector(ca->set, bucket), ca->sb.bucket_size, GFP_KERNEL, 0); mutex_lock(&ca->set->bucket_lock); } allocator_wait(ca, bch_allocator_push(ca, bucket)); wake_up(&ca->set->btree_cache_wait); wake_up(&ca->set->bucket_wait); } /* * We've run out of free buckets, we need to find some buckets * we can invalidate. First, invalidate them in memory and add * them to the free_inc list: */ retry_invalidate: allocator_wait(ca, ca->set->gc_mark_valid && !ca->invalidate_needs_gc); invalidate_buckets(ca); /* * Now, we write their new gens to disk so we can start writing * new stuff to them: */ allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); if (CACHE_SYNC(&ca->set->sb)) { /* * This could deadlock if an allocation with a btree * node locked ever blocked - having the btree node * locked would block garbage collection, but here we're * waiting on garbage collection before we invalidate * and free anything. * * But this should be safe since the btree code always * uses btree_check_reserve() before allocating now, and * if it fails it blocks without btree nodes locked. */ if (!fifo_full(&ca->free_inc)) goto retry_invalidate; bch_prio_write(ca); } } } /* Allocation */ long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) { DEFINE_WAIT(w); struct bucket *b; long r; /* fastpath */ if (fifo_pop(&ca->free[RESERVE_NONE], r) || fifo_pop(&ca->free[reserve], r)) goto out; if (!wait) { trace_bcache_alloc_fail(ca, reserve); return -1; } do { prepare_to_wait(&ca->set->bucket_wait, &w, TASK_UNINTERRUPTIBLE); mutex_unlock(&ca->set->bucket_lock); schedule(); mutex_lock(&ca->set->bucket_lock); } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && !fifo_pop(&ca->free[reserve], r)); finish_wait(&ca->set->bucket_wait, &w); out: if (ca->alloc_thread) wake_up_process(ca->alloc_thread); trace_bcache_alloc(ca, reserve); if (expensive_debug_checks(ca->set)) { size_t iter; long i; unsigned j; for (iter = 0; iter < prio_buckets(ca) * 2; iter++) BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); for (j = 0; j < RESERVE_NR; j++) fifo_for_each(i, &ca->free[j], iter) BUG_ON(i == r); fifo_for_each(i, &ca->free_inc, iter) BUG_ON(i == r); } b = ca->buckets + r; BUG_ON(atomic_read(&b->pin) != 1); SET_GC_SECTORS_USED(b, ca->sb.bucket_size); if (reserve <= RESERVE_PRIO) { SET_GC_MARK(b, GC_MARK_METADATA); SET_GC_MOVE(b, 0); b->prio = BTREE_PRIO; } else { SET_GC_MARK(b, GC_MARK_RECLAIMABLE); SET_GC_MOVE(b, 0); b->prio = INITIAL_PRIO; } return r; } void __bch_bucket_free(struct cache *ca, struct bucket *b) { SET_GC_MARK(b, 0); SET_GC_SECTORS_USED(b, 0); } void bch_bucket_free(struct cache_set *c, struct bkey *k) { unsigned i; for (i = 0; i < KEY_PTRS(k); i++) __bch_bucket_free(PTR_CACHE(c, k, i), PTR_BUCKET(c, k, i)); } int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, struct bkey *k, int n, bool wait) { int i; lockdep_assert_held(&c->bucket_lock); BUG_ON(!n || n > c->caches_loaded || n > 8); bkey_init(k); /* sort by free space/prio of oldest data in caches */ for (i = 0; i < n; i++) { struct cache *ca = c->cache_by_alloc[i]; long b = bch_bucket_alloc(ca, reserve, wait); if (b == -1) goto err; k->ptr[i] = MAKE_PTR(ca->buckets[b].gen, bucket_to_sector(c, b), ca->sb.nr_this_dev); SET_KEY_PTRS(k, i + 1); } return 0; err: bch_bucket_free(c, k); bkey_put(c, k); return -1; } int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, struct bkey *k, int n, bool wait) { int ret; mutex_lock(&c->bucket_lock); ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); mutex_unlock(&c->bucket_lock); return ret; } /* Sector allocator */ struct open_bucket { struct list_head list; unsigned last_write_point; unsigned sectors_free; BKEY_PADDED(key); }; /* * We keep multiple buckets open for writes, and try to segregate different * write streams for better cache utilization: first we try to segregate flash * only volume write streams from cached devices, secondly we look for a bucket * where the last write to it was sequential with the current write, and * failing that we look for a bucket that was last used by the same task. * * The ideas is if you've got multiple tasks pulling data into the cache at the * same time, you'll get better cache utilization if you try to segregate their * data and preserve locality. * * For example, dirty sectors of flash only volume is not reclaimable, if their * dirty sectors mixed with dirty sectors of cached device, such buckets will * be marked as dirty and won't be reclaimed, though the dirty data of cached * device have been written back to backend device. * * And say you've starting Firefox at the same time you're copying a * bunch of files. Firefox will likely end up being fairly hot and stay in the * cache awhile, but the data you copied might not be; if you wrote all that * data to the same buckets it'd get invalidated at the same time. * * Both of those tasks will be doing fairly random IO so we can't rely on * detecting sequential IO to segregate their data, but going off of the task * should be a sane heuristic. */ static struct open_bucket *pick_data_bucket(struct cache_set *c, const struct bkey *search, unsigned write_point, struct bkey *alloc) { struct open_bucket *ret, *ret_task = NULL; list_for_each_entry_reverse(ret, &c->data_buckets, list) if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) continue; else if (!bkey_cmp(&ret->key, search)) goto found; else if (ret->last_write_point == write_point) ret_task = ret; ret = ret_task ?: list_first_entry(&c->data_buckets, struct open_bucket, list); found: if (!ret->sectors_free && KEY_PTRS(alloc)) { ret->sectors_free = c->sb.bucket_size; bkey_copy(&ret->key, alloc); bkey_init(alloc); } if (!ret->sectors_free) ret = NULL; return ret; } /* * Allocates some space in the cache to write to, and k to point to the newly * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the * end of the newly allocated space). * * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many * sectors were actually allocated. * * If s->writeback is true, will not fail. */ bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, unsigned write_point, unsigned write_prio, bool wait) { struct open_bucket *b; BKEY_PADDED(key) alloc; unsigned i; /* * We might have to allocate a new bucket, which we can't do with a * spinlock held. So if we have to allocate, we drop the lock, allocate * and then retry. KEY_PTRS() indicates whether alloc points to * allocated bucket(s). */ bkey_init(&alloc.key); spin_lock(&c->data_bucket_lock); while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { unsigned watermark = write_prio ? RESERVE_MOVINGGC : RESERVE_NONE; spin_unlock(&c->data_bucket_lock); if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) return false; spin_lock(&c->data_bucket_lock); } /* * If we had to allocate, we might race and not need to allocate the * second time we call find_data_bucket(). If we allocated a bucket but * didn't use it, drop the refcount bch_bucket_alloc_set() took: */ if (KEY_PTRS(&alloc.key)) bkey_put(c, &alloc.key); for (i = 0; i < KEY_PTRS(&b->key); i++) EBUG_ON(ptr_stale(c, &b->key, i)); /* Set up the pointer to the space we're allocating: */ for (i = 0; i < KEY_PTRS(&b->key); i++) k->ptr[i] = b->key.ptr[i]; sectors = min(sectors, b->sectors_free); SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); SET_KEY_SIZE(k, sectors); SET_KEY_PTRS(k, KEY_PTRS(&b->key)); /* * Move b to the end of the lru, and keep track of what this bucket was * last used for: */ list_move_tail(&b->list, &c->data_buckets); bkey_copy_key(&b->key, k); b->last_write_point = write_point; b->sectors_free -= sectors; for (i = 0; i < KEY_PTRS(&b->key); i++) { SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); atomic_long_add(sectors, &PTR_CACHE(c, &b->key, i)->sectors_written); } if (b->sectors_free < c->sb.block_size) b->sectors_free = 0; /* * k takes refcounts on the buckets it points to until it's inserted * into the btree, but if we're done with this bucket we just transfer * get_data_bucket()'s refcount. */ if (b->sectors_free) for (i = 0; i < KEY_PTRS(&b->key); i++) atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); spin_unlock(&c->data_bucket_lock); return true; } /* Init */ void bch_open_buckets_free(struct cache_set *c) { struct open_bucket *b; while (!list_empty(&c->data_buckets)) { b = list_first_entry(&c->data_buckets, struct open_bucket, list); list_del(&b->list); kfree(b); } } int bch_open_buckets_alloc(struct cache_set *c) { int i; spin_lock_init(&c->data_bucket_lock); for (i = 0; i < 6; i++) { struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); if (!b) return -ENOMEM; list_add(&b->list, &c->data_buckets); } return 0; } int bch_cache_allocator_start(struct cache *ca) { struct task_struct *k = kthread_run(bch_allocator_thread, ca, "bcache_allocator"); if (IS_ERR(k)) return PTR_ERR(k); ca->alloc_thread = k; return 0; } |