Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | // SPDX-License-Identifier: GPL-2.0 /* * random utiility code, for bcache but in theory not specific to bcache * * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> * Copyright 2012 Google, Inc. */ #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/ctype.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/types.h> #include <linux/sched/clock.h> #include "util.h" #define simple_strtoint(c, end, base) simple_strtol(c, end, base) #define simple_strtouint(c, end, base) simple_strtoul(c, end, base) #define STRTO_H(name, type) \ int bch_ ## name ## _h(const char *cp, type *res) \ { \ int u = 0; \ char *e; \ type i = simple_ ## name(cp, &e, 10); \ \ switch (tolower(*e)) { \ default: \ return -EINVAL; \ case 'y': \ case 'z': \ u++; \ /* fall through */ \ case 'e': \ u++; \ /* fall through */ \ case 'p': \ u++; \ /* fall through */ \ case 't': \ u++; \ /* fall through */ \ case 'g': \ u++; \ /* fall through */ \ case 'm': \ u++; \ /* fall through */ \ case 'k': \ u++; \ if (e++ == cp) \ return -EINVAL; \ /* fall through */ \ case '\n': \ case '\0': \ if (*e == '\n') \ e++; \ } \ \ if (*e) \ return -EINVAL; \ \ while (u--) { \ if ((type) ~0 > 0 && \ (type) ~0 / 1024 <= i) \ return -EINVAL; \ if ((i > 0 && ANYSINT_MAX(type) / 1024 < i) || \ (i < 0 && -ANYSINT_MAX(type) / 1024 > i)) \ return -EINVAL; \ i *= 1024; \ } \ \ *res = i; \ return 0; \ } \ STRTO_H(strtoint, int) STRTO_H(strtouint, unsigned int) STRTO_H(strtoll, long long) STRTO_H(strtoull, unsigned long long) /** * bch_hprint - formats @v to human readable string for sysfs. * @buf: the (at least 8 byte) buffer to format the result into. * @v: signed 64 bit integer * * Returns the number of bytes used by format. */ ssize_t bch_hprint(char *buf, int64_t v) { static const char units[] = "?kMGTPEZY"; int u = 0, t; uint64_t q; if (v < 0) q = -v; else q = v; /* For as long as the number is more than 3 digits, but at least * once, shift right / divide by 1024. Keep the remainder for * a digit after the decimal point. */ do { u++; t = q & ~(~0 << 10); q >>= 10; } while (q >= 1000); if (v < 0) /* '-', up to 3 digits, '.', 1 digit, 1 character, null; * yields 8 bytes. */ return sprintf(buf, "-%llu.%i%c", q, t * 10 / 1024, units[u]); else return sprintf(buf, "%llu.%i%c", q, t * 10 / 1024, units[u]); } bool bch_is_zero(const char *p, size_t n) { size_t i; for (i = 0; i < n; i++) if (p[i]) return false; return true; } int bch_parse_uuid(const char *s, char *uuid) { size_t i, j, x; memset(uuid, 0, 16); for (i = 0, j = 0; i < strspn(s, "-0123456789:ABCDEFabcdef") && j < 32; i++) { x = s[i] | 32; switch (x) { case '0'...'9': x -= '0'; break; case 'a'...'f': x -= 'a' - 10; break; default: continue; } if (!(j & 1)) x <<= 4; uuid[j++ >> 1] |= x; } return i; } void bch_time_stats_update(struct time_stats *stats, uint64_t start_time) { uint64_t now, duration, last; spin_lock(&stats->lock); now = local_clock(); duration = time_after64(now, start_time) ? now - start_time : 0; last = time_after64(now, stats->last) ? now - stats->last : 0; stats->max_duration = max(stats->max_duration, duration); if (stats->last) { ewma_add(stats->average_duration, duration, 8, 8); if (stats->average_frequency) ewma_add(stats->average_frequency, last, 8, 8); else stats->average_frequency = last << 8; } else { stats->average_duration = duration << 8; } stats->last = now ?: 1; spin_unlock(&stats->lock); } /** * bch_next_delay() - update ratelimiting statistics and calculate next delay * @d: the struct bch_ratelimit to update * @done: the amount of work done, in arbitrary units * * Increment @d by the amount of work done, and return how long to delay in * jiffies until the next time to do some work. */ uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done) { uint64_t now = local_clock(); d->next += div_u64(done * NSEC_PER_SEC, atomic_long_read(&d->rate)); /* Bound the time. Don't let us fall further than 2 seconds behind * (this prevents unnecessary backlog that would make it impossible * to catch up). If we're ahead of the desired writeback rate, * don't let us sleep more than 2.5 seconds (so we can notice/respond * if the control system tells us to speed up!). */ if (time_before64(now + NSEC_PER_SEC * 5LLU / 2LLU, d->next)) d->next = now + NSEC_PER_SEC * 5LLU / 2LLU; if (time_after64(now - NSEC_PER_SEC * 2, d->next)) d->next = now - NSEC_PER_SEC * 2; return time_after64(d->next, now) ? div_u64(d->next - now, NSEC_PER_SEC / HZ) : 0; } /* * Generally it isn't good to access .bi_io_vec and .bi_vcnt directly, * the preferred way is bio_add_page, but in this case, bch_bio_map() * supposes that the bvec table is empty, so it is safe to access * .bi_vcnt & .bi_io_vec in this way even after multipage bvec is * supported. */ void bch_bio_map(struct bio *bio, void *base) { size_t size = bio->bi_iter.bi_size; struct bio_vec *bv = bio->bi_io_vec; BUG_ON(!bio->bi_iter.bi_size); BUG_ON(bio->bi_vcnt); bv->bv_offset = base ? offset_in_page(base) : 0; goto start; for (; size; bio->bi_vcnt++, bv++) { bv->bv_offset = 0; start: bv->bv_len = min_t(size_t, PAGE_SIZE - bv->bv_offset, size); if (base) { bv->bv_page = is_vmalloc_addr(base) ? vmalloc_to_page(base) : virt_to_page(base); base += bv->bv_len; } size -= bv->bv_len; } } /** * bch_bio_alloc_pages - allocates a single page for each bvec in a bio * @bio: bio to allocate pages for * @gfp_mask: flags for allocation * * Allocates pages up to @bio->bi_vcnt. * * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are * freed. */ int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) { int i; struct bio_vec *bv; bio_for_each_segment_all(bv, bio, i) { bv->bv_page = alloc_page(gfp_mask); if (!bv->bv_page) { while (--bv >= bio->bi_io_vec) __free_page(bv->bv_page); return -ENOMEM; } } return 0; } |