Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/amd-iommu.h>
#include <linux/bsearch.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_pm4_headers_vi.h"

#define MQD_SIZE_ALIGNED 768

static const struct kfd_device_info kaveri_device_info = {
	.asic_family = CHIP_KAVERI,
	.max_pasid_bits = 16,
	/* max num of queues for KV.TODO should be a dynamic value */
	.max_no_of_hqd	= 24,
	.ih_ring_entry_size = 4 * sizeof(uint32_t),
	.event_interrupt_class = &event_interrupt_class_cik,
	.num_of_watch_points = 4,
	.mqd_size_aligned = MQD_SIZE_ALIGNED
};

static const struct kfd_device_info carrizo_device_info = {
	.asic_family = CHIP_CARRIZO,
	.max_pasid_bits = 16,
	/* max num of queues for CZ.TODO should be a dynamic value */
	.max_no_of_hqd	= 24,
	.ih_ring_entry_size = 4 * sizeof(uint32_t),
	.event_interrupt_class = &event_interrupt_class_cik,
	.num_of_watch_points = 4,
	.mqd_size_aligned = MQD_SIZE_ALIGNED
};

struct kfd_deviceid {
	unsigned short did;
	const struct kfd_device_info *device_info;
};

/* Please keep this sorted by increasing device id. */
static const struct kfd_deviceid supported_devices[] = {
	{ 0x1304, &kaveri_device_info },	/* Kaveri */
	{ 0x1305, &kaveri_device_info },	/* Kaveri */
	{ 0x1306, &kaveri_device_info },	/* Kaveri */
	{ 0x1307, &kaveri_device_info },	/* Kaveri */
	{ 0x1309, &kaveri_device_info },	/* Kaveri */
	{ 0x130A, &kaveri_device_info },	/* Kaveri */
	{ 0x130B, &kaveri_device_info },	/* Kaveri */
	{ 0x130C, &kaveri_device_info },	/* Kaveri */
	{ 0x130D, &kaveri_device_info },	/* Kaveri */
	{ 0x130E, &kaveri_device_info },	/* Kaveri */
	{ 0x130F, &kaveri_device_info },	/* Kaveri */
	{ 0x1310, &kaveri_device_info },	/* Kaveri */
	{ 0x1311, &kaveri_device_info },	/* Kaveri */
	{ 0x1312, &kaveri_device_info },	/* Kaveri */
	{ 0x1313, &kaveri_device_info },	/* Kaveri */
	{ 0x1315, &kaveri_device_info },	/* Kaveri */
	{ 0x1316, &kaveri_device_info },	/* Kaveri */
	{ 0x1317, &kaveri_device_info },	/* Kaveri */
	{ 0x1318, &kaveri_device_info },	/* Kaveri */
	{ 0x131B, &kaveri_device_info },	/* Kaveri */
	{ 0x131C, &kaveri_device_info },	/* Kaveri */
	{ 0x131D, &kaveri_device_info },	/* Kaveri */
	{ 0x9870, &carrizo_device_info },	/* Carrizo */
	{ 0x9874, &carrizo_device_info },	/* Carrizo */
	{ 0x9875, &carrizo_device_info },	/* Carrizo */
	{ 0x9876, &carrizo_device_info },	/* Carrizo */
	{ 0x9877, &carrizo_device_info }	/* Carrizo */
};

static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
				unsigned int chunk_size);
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);

static const struct kfd_device_info *lookup_device_info(unsigned short did)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
		if (supported_devices[i].did == did) {
			WARN_ON(!supported_devices[i].device_info);
			return supported_devices[i].device_info;
		}
	}

	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
		 did);

	return NULL;
}

struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
{
	struct kfd_dev *kfd;

	const struct kfd_device_info *device_info =
					lookup_device_info(pdev->device);

	if (!device_info) {
		dev_err(kfd_device, "kgd2kfd_probe failed\n");
		return NULL;
	}

	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
	if (!kfd)
		return NULL;

	kfd->kgd = kgd;
	kfd->device_info = device_info;
	kfd->pdev = pdev;
	kfd->init_complete = false;
	kfd->kfd2kgd = f2g;

	mutex_init(&kfd->doorbell_mutex);
	memset(&kfd->doorbell_available_index, 0,
		sizeof(kfd->doorbell_available_index));

	return kfd;
}

static bool device_iommu_pasid_init(struct kfd_dev *kfd)
{
	const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
					AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
					AMD_IOMMU_DEVICE_FLAG_PASID_SUP;

	struct amd_iommu_device_info iommu_info;
	unsigned int pasid_limit;
	int err;

	err = amd_iommu_device_info(kfd->pdev, &iommu_info);
	if (err < 0) {
		dev_err(kfd_device,
			"error getting iommu info. is the iommu enabled?\n");
		return false;
	}

	if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
		dev_err(kfd_device, "error required iommu flags ats %i, pri %i, pasid %i\n",
		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
		       (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP)
									!= 0);
		return false;
	}

	pasid_limit = min_t(unsigned int,
			(unsigned int)(1 << kfd->device_info->max_pasid_bits),
			iommu_info.max_pasids);
	/*
	 * last pasid is used for kernel queues doorbells
	 * in the future the last pasid might be used for a kernel thread.
	 */
	pasid_limit = min_t(unsigned int,
				pasid_limit,
				kfd->doorbell_process_limit - 1);

	err = amd_iommu_init_device(kfd->pdev, pasid_limit);
	if (err < 0) {
		dev_err(kfd_device, "error initializing iommu device\n");
		return false;
	}

	if (!kfd_set_pasid_limit(pasid_limit)) {
		dev_err(kfd_device, "error setting pasid limit\n");
		amd_iommu_free_device(kfd->pdev);
		return false;
	}

	return true;
}

static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
{
	struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);

	if (dev)
		kfd_unbind_process_from_device(dev, pasid);
}

/*
 * This function called by IOMMU driver on PPR failure
 */
static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
		unsigned long address, u16 flags)
{
	struct kfd_dev *dev;

	dev_warn(kfd_device,
			"Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X",
			PCI_BUS_NUM(pdev->devfn),
			PCI_SLOT(pdev->devfn),
			PCI_FUNC(pdev->devfn),
			pasid,
			address,
			flags);

	dev = kfd_device_by_pci_dev(pdev);
	if (!WARN_ON(!dev))
		kfd_signal_iommu_event(dev, pasid, address,
			flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC);

	return AMD_IOMMU_INV_PRI_RSP_INVALID;
}

bool kgd2kfd_device_init(struct kfd_dev *kfd,
			 const struct kgd2kfd_shared_resources *gpu_resources)
{
	unsigned int size;

	kfd->shared_resources = *gpu_resources;

	/* calculate max size of mqds needed for queues */
	size = max_num_of_queues_per_device *
			kfd->device_info->mqd_size_aligned;

	/*
	 * calculate max size of runlist packet.
	 * There can be only 2 packets at once
	 */
	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
		+ sizeof(struct pm4_mes_runlist)) * 2;

	/* Add size of HIQ & DIQ */
	size += KFD_KERNEL_QUEUE_SIZE * 2;

	/* add another 512KB for all other allocations on gart (HPD, fences) */
	size += 512 * 1024;

	if (kfd->kfd2kgd->init_gtt_mem_allocation(
			kfd->kgd, size, &kfd->gtt_mem,
			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
		goto out;
	}

	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);

	/* Initialize GTT sa with 512 byte chunk size */
	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
		goto kfd_gtt_sa_init_error;
	}

	if (kfd_doorbell_init(kfd)) {
		dev_err(kfd_device,
			"Error initializing doorbell aperture\n");
		goto kfd_doorbell_error;
	}

	if (kfd_topology_add_device(kfd)) {
		dev_err(kfd_device, "Error adding device to topology\n");
		goto kfd_topology_add_device_error;
	}

	if (kfd_interrupt_init(kfd)) {
		dev_err(kfd_device, "Error initializing interrupts\n");
		goto kfd_interrupt_error;
	}

	if (!device_iommu_pasid_init(kfd)) {
		dev_err(kfd_device,
			"Error initializing iommuv2 for device %x:%x\n",
			kfd->pdev->vendor, kfd->pdev->device);
		goto device_iommu_pasid_error;
	}
	amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
						iommu_pasid_shutdown_callback);
	amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);

	kfd->dqm = device_queue_manager_init(kfd);
	if (!kfd->dqm) {
		dev_err(kfd_device, "Error initializing queue manager\n");
		goto device_queue_manager_error;
	}

	if (kfd->dqm->ops.start(kfd->dqm)) {
		dev_err(kfd_device,
			"Error starting queue manager for device %x:%x\n",
			kfd->pdev->vendor, kfd->pdev->device);
		goto dqm_start_error;
	}

	kfd->dbgmgr = NULL;

	kfd->init_complete = true;
	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
		 kfd->pdev->device);

	pr_debug("Starting kfd with the following scheduling policy %d\n",
		sched_policy);

	goto out;

dqm_start_error:
	device_queue_manager_uninit(kfd->dqm);
device_queue_manager_error:
	amd_iommu_free_device(kfd->pdev);
device_iommu_pasid_error:
	kfd_interrupt_exit(kfd);
kfd_interrupt_error:
	kfd_topology_remove_device(kfd);
kfd_topology_add_device_error:
	kfd_doorbell_fini(kfd);
kfd_doorbell_error:
	kfd_gtt_sa_fini(kfd);
kfd_gtt_sa_init_error:
	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
	dev_err(kfd_device,
		"device %x:%x NOT added due to errors\n",
		kfd->pdev->vendor, kfd->pdev->device);
out:
	return kfd->init_complete;
}

void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
	if (kfd->init_complete) {
		device_queue_manager_uninit(kfd->dqm);
		amd_iommu_free_device(kfd->pdev);
		kfd_interrupt_exit(kfd);
		kfd_topology_remove_device(kfd);
		kfd_doorbell_fini(kfd);
		kfd_gtt_sa_fini(kfd);
		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
	}

	kfree(kfd);
}

void kgd2kfd_suspend(struct kfd_dev *kfd)
{
	if (kfd->init_complete) {
		kfd->dqm->ops.stop(kfd->dqm);
		amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
		amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL);
		amd_iommu_free_device(kfd->pdev);
	}
}

int kgd2kfd_resume(struct kfd_dev *kfd)
{
	unsigned int pasid_limit;
	int err;

	pasid_limit = kfd_get_pasid_limit();

	if (kfd->init_complete) {
		err = amd_iommu_init_device(kfd->pdev, pasid_limit);
		if (err < 0) {
			dev_err(kfd_device, "failed to initialize iommu\n");
			return -ENXIO;
		}

		amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
						iommu_pasid_shutdown_callback);
		amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
		kfd->dqm->ops.start(kfd->dqm);
	}

	return 0;
}

/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
	if (!kfd->init_complete)
		return;

	spin_lock(&kfd->interrupt_lock);

	if (kfd->interrupts_active
	    && interrupt_is_wanted(kfd, ih_ring_entry)
	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
		schedule_work(&kfd->interrupt_work);

	spin_unlock(&kfd->interrupt_lock);
}

static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
				unsigned int chunk_size)
{
	unsigned int num_of_longs;

	if (WARN_ON(buf_size < chunk_size))
		return -EINVAL;
	if (WARN_ON(buf_size == 0))
		return -EINVAL;
	if (WARN_ON(chunk_size == 0))
		return -EINVAL;

	kfd->gtt_sa_chunk_size = chunk_size;
	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;

	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
		BITS_PER_LONG;

	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);

	if (!kfd->gtt_sa_bitmap)
		return -ENOMEM;

	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);

	mutex_init(&kfd->gtt_sa_lock);

	return 0;

}

static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
{
	mutex_destroy(&kfd->gtt_sa_lock);
	kfree(kfd->gtt_sa_bitmap);
}

static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
						unsigned int bit_num,
						unsigned int chunk_size)
{
	return start_addr + bit_num * chunk_size;
}

static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
						unsigned int bit_num,
						unsigned int chunk_size)
{
	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
}

int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
			struct kfd_mem_obj **mem_obj)
{
	unsigned int found, start_search, cur_size;

	if (size == 0)
		return -EINVAL;

	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
		return -ENOMEM;

	*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
	if ((*mem_obj) == NULL)
		return -ENOMEM;

	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);

	start_search = 0;

	mutex_lock(&kfd->gtt_sa_lock);

kfd_gtt_restart_search:
	/* Find the first chunk that is free */
	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
					kfd->gtt_sa_num_of_chunks,
					start_search);

	pr_debug("Found = %d\n", found);

	/* If there wasn't any free chunk, bail out */
	if (found == kfd->gtt_sa_num_of_chunks)
		goto kfd_gtt_no_free_chunk;

	/* Update fields of mem_obj */
	(*mem_obj)->range_start = found;
	(*mem_obj)->range_end = found;
	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
					kfd->gtt_start_gpu_addr,
					found,
					kfd->gtt_sa_chunk_size);
	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
					kfd->gtt_start_cpu_ptr,
					found,
					kfd->gtt_sa_chunk_size);

	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);

	/* If we need only one chunk, mark it as allocated and get out */
	if (size <= kfd->gtt_sa_chunk_size) {
		pr_debug("Single bit\n");
		set_bit(found, kfd->gtt_sa_bitmap);
		goto kfd_gtt_out;
	}

	/* Otherwise, try to see if we have enough contiguous chunks */
	cur_size = size - kfd->gtt_sa_chunk_size;
	do {
		(*mem_obj)->range_end =
			find_next_zero_bit(kfd->gtt_sa_bitmap,
					kfd->gtt_sa_num_of_chunks, ++found);
		/*
		 * If next free chunk is not contiguous than we need to
		 * restart our search from the last free chunk we found (which
		 * wasn't contiguous to the previous ones
		 */
		if ((*mem_obj)->range_end != found) {
			start_search = found;
			goto kfd_gtt_restart_search;
		}

		/*
		 * If we reached end of buffer, bail out with error
		 */
		if (found == kfd->gtt_sa_num_of_chunks)
			goto kfd_gtt_no_free_chunk;

		/* Check if we don't need another chunk */
		if (cur_size <= kfd->gtt_sa_chunk_size)
			cur_size = 0;
		else
			cur_size -= kfd->gtt_sa_chunk_size;

	} while (cur_size > 0);

	pr_debug("range_start = %d, range_end = %d\n",
		(*mem_obj)->range_start, (*mem_obj)->range_end);

	/* Mark the chunks as allocated */
	for (found = (*mem_obj)->range_start;
		found <= (*mem_obj)->range_end;
		found++)
		set_bit(found, kfd->gtt_sa_bitmap);

kfd_gtt_out:
	mutex_unlock(&kfd->gtt_sa_lock);
	return 0;

kfd_gtt_no_free_chunk:
	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
	mutex_unlock(&kfd->gtt_sa_lock);
	kfree(mem_obj);
	return -ENOMEM;
}

int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
{
	unsigned int bit;

	/* Act like kfree when trying to free a NULL object */
	if (!mem_obj)
		return 0;

	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
			mem_obj, mem_obj->range_start, mem_obj->range_end);

	mutex_lock(&kfd->gtt_sa_lock);

	/* Mark the chunks as free */
	for (bit = mem_obj->range_start;
		bit <= mem_obj->range_end;
		bit++)
		clear_bit(bit, kfd->gtt_sa_bitmap);

	mutex_unlock(&kfd->gtt_sa_lock);

	kfree(mem_obj);
	return 0;
}