Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | /* paravirtual clock -- common code used by kvm/xen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/sched.h> #include <linux/gfp.h> #include <linux/bootmem.h> #include <asm/fixmap.h> #include <asm/pvclock.h> static u8 valid_flags __read_mostly = 0; void pvclock_set_flags(u8 flags) { valid_flags = flags; } unsigned long pvclock_tsc_khz(struct pvclock_vcpu_time_info *src) { u64 pv_tsc_khz = 1000000ULL << 32; do_div(pv_tsc_khz, src->tsc_to_system_mul); if (src->tsc_shift < 0) pv_tsc_khz <<= -src->tsc_shift; else pv_tsc_khz >>= src->tsc_shift; return pv_tsc_khz; } static atomic64_t last_value = ATOMIC64_INIT(0); void pvclock_resume(void) { atomic64_set(&last_value, 0); } u8 pvclock_read_flags(struct pvclock_vcpu_time_info *src) { unsigned version; cycle_t ret; u8 flags; do { version = __pvclock_read_cycles(src, &ret, &flags); } while ((src->version & 1) || version != src->version); return flags & valid_flags; } cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src) { unsigned version; cycle_t ret; u64 last; u8 flags; do { version = __pvclock_read_cycles(src, &ret, &flags); } while ((src->version & 1) || version != src->version); if ((valid_flags & PVCLOCK_TSC_STABLE_BIT) && (flags & PVCLOCK_TSC_STABLE_BIT)) return ret; /* * Assumption here is that last_value, a global accumulator, always goes * forward. If we are less than that, we should not be much smaller. * We assume there is an error marging we're inside, and then the correction * does not sacrifice accuracy. * * For reads: global may have changed between test and return, * but this means someone else updated poked the clock at a later time. * We just need to make sure we are not seeing a backwards event. * * For updates: last_value = ret is not enough, since two vcpus could be * updating at the same time, and one of them could be slightly behind, * making the assumption that last_value always go forward fail to hold. */ last = atomic64_read(&last_value); do { if (ret < last) return last; last = atomic64_cmpxchg(&last_value, last, ret); } while (unlikely(last != ret)); return ret; } void pvclock_read_wallclock(struct pvclock_wall_clock *wall_clock, struct pvclock_vcpu_time_info *vcpu_time, struct timespec *ts) { u32 version; u64 delta; struct timespec now; /* get wallclock at system boot */ do { version = wall_clock->version; rmb(); /* fetch version before time */ now.tv_sec = wall_clock->sec; now.tv_nsec = wall_clock->nsec; rmb(); /* fetch time before checking version */ } while ((wall_clock->version & 1) || (version != wall_clock->version)); delta = pvclock_clocksource_read(vcpu_time); /* time since system boot */ delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec; now.tv_nsec = do_div(delta, NSEC_PER_SEC); now.tv_sec = delta; set_normalized_timespec(ts, now.tv_sec, now.tv_nsec); } static struct pvclock_vsyscall_time_info *pvclock_vdso_info; static struct pvclock_vsyscall_time_info * pvclock_get_vsyscall_user_time_info(int cpu) { if (!pvclock_vdso_info) { BUG(); return NULL; } return &pvclock_vdso_info[cpu]; } struct pvclock_vcpu_time_info *pvclock_get_vsyscall_time_info(int cpu) { return &pvclock_get_vsyscall_user_time_info(cpu)->pvti; } #ifdef CONFIG_X86_64 static int pvclock_task_migrate(struct notifier_block *nb, unsigned long l, void *v) { struct task_migration_notifier *mn = v; struct pvclock_vsyscall_time_info *pvti; pvti = pvclock_get_vsyscall_user_time_info(mn->from_cpu); /* this is NULL when pvclock vsyscall is not initialized */ if (unlikely(pvti == NULL)) return NOTIFY_DONE; pvti->migrate_count++; return NOTIFY_DONE; } static struct notifier_block pvclock_migrate = { .notifier_call = pvclock_task_migrate, }; /* * Initialize the generic pvclock vsyscall state. This will allocate * a/some page(s) for the per-vcpu pvclock information, set up a * fixmap mapping for the page(s) */ int __init pvclock_init_vsyscall(struct pvclock_vsyscall_time_info *i, int size) { int idx; WARN_ON (size != PVCLOCK_VSYSCALL_NR_PAGES*PAGE_SIZE); pvclock_vdso_info = i; for (idx = 0; idx <= (PVCLOCK_FIXMAP_END-PVCLOCK_FIXMAP_BEGIN); idx++) { __set_fixmap(PVCLOCK_FIXMAP_BEGIN + idx, __pa_symbol(i) + (idx*PAGE_SIZE), PAGE_KERNEL_VVAR); } register_task_migration_notifier(&pvclock_migrate); return 0; } #endif |