Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
/*  paravirtual clock -- common code used by kvm/xen

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/gfp.h>
#include <linux/bootmem.h>
#include <asm/fixmap.h>
#include <asm/pvclock.h>

static u8 valid_flags __read_mostly = 0;

void pvclock_set_flags(u8 flags)
{
	valid_flags = flags;
}

unsigned long pvclock_tsc_khz(struct pvclock_vcpu_time_info *src)
{
	u64 pv_tsc_khz = 1000000ULL << 32;

	do_div(pv_tsc_khz, src->tsc_to_system_mul);
	if (src->tsc_shift < 0)
		pv_tsc_khz <<= -src->tsc_shift;
	else
		pv_tsc_khz >>= src->tsc_shift;
	return pv_tsc_khz;
}

static atomic64_t last_value = ATOMIC64_INIT(0);

void pvclock_resume(void)
{
	atomic64_set(&last_value, 0);
}

u8 pvclock_read_flags(struct pvclock_vcpu_time_info *src)
{
	unsigned version;
	cycle_t ret;
	u8 flags;

	do {
		version = __pvclock_read_cycles(src, &ret, &flags);
	} while ((src->version & 1) || version != src->version);

	return flags & valid_flags;
}

cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src)
{
	unsigned version;
	cycle_t ret;
	u64 last;
	u8 flags;

	do {
		version = __pvclock_read_cycles(src, &ret, &flags);
	} while ((src->version & 1) || version != src->version);

	if ((valid_flags & PVCLOCK_TSC_STABLE_BIT) &&
		(flags & PVCLOCK_TSC_STABLE_BIT))
		return ret;

	/*
	 * Assumption here is that last_value, a global accumulator, always goes
	 * forward. If we are less than that, we should not be much smaller.
	 * We assume there is an error marging we're inside, and then the correction
	 * does not sacrifice accuracy.
	 *
	 * For reads: global may have changed between test and return,
	 * but this means someone else updated poked the clock at a later time.
	 * We just need to make sure we are not seeing a backwards event.
	 *
	 * For updates: last_value = ret is not enough, since two vcpus could be
	 * updating at the same time, and one of them could be slightly behind,
	 * making the assumption that last_value always go forward fail to hold.
	 */
	last = atomic64_read(&last_value);
	do {
		if (ret < last)
			return last;
		last = atomic64_cmpxchg(&last_value, last, ret);
	} while (unlikely(last != ret));

	return ret;
}

void pvclock_read_wallclock(struct pvclock_wall_clock *wall_clock,
			    struct pvclock_vcpu_time_info *vcpu_time,
			    struct timespec *ts)
{
	u32 version;
	u64 delta;
	struct timespec now;

	/* get wallclock at system boot */
	do {
		version = wall_clock->version;
		rmb();		/* fetch version before time */
		now.tv_sec  = wall_clock->sec;
		now.tv_nsec = wall_clock->nsec;
		rmb();		/* fetch time before checking version */
	} while ((wall_clock->version & 1) || (version != wall_clock->version));

	delta = pvclock_clocksource_read(vcpu_time);	/* time since system boot */
	delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec;

	now.tv_nsec = do_div(delta, NSEC_PER_SEC);
	now.tv_sec = delta;

	set_normalized_timespec(ts, now.tv_sec, now.tv_nsec);
}

static struct pvclock_vsyscall_time_info *pvclock_vdso_info;

static struct pvclock_vsyscall_time_info *
pvclock_get_vsyscall_user_time_info(int cpu)
{
	if (!pvclock_vdso_info) {
		BUG();
		return NULL;
	}

	return &pvclock_vdso_info[cpu];
}

struct pvclock_vcpu_time_info *pvclock_get_vsyscall_time_info(int cpu)
{
	return &pvclock_get_vsyscall_user_time_info(cpu)->pvti;
}

#ifdef CONFIG_X86_64
static int pvclock_task_migrate(struct notifier_block *nb, unsigned long l,
			        void *v)
{
	struct task_migration_notifier *mn = v;
	struct pvclock_vsyscall_time_info *pvti;

	pvti = pvclock_get_vsyscall_user_time_info(mn->from_cpu);

	/* this is NULL when pvclock vsyscall is not initialized */
	if (unlikely(pvti == NULL))
		return NOTIFY_DONE;

	pvti->migrate_count++;

	return NOTIFY_DONE;
}

static struct notifier_block pvclock_migrate = {
	.notifier_call = pvclock_task_migrate,
};

/*
 * Initialize the generic pvclock vsyscall state.  This will allocate
 * a/some page(s) for the per-vcpu pvclock information, set up a
 * fixmap mapping for the page(s)
 */

int __init pvclock_init_vsyscall(struct pvclock_vsyscall_time_info *i,
				 int size)
{
	int idx;

	WARN_ON (size != PVCLOCK_VSYSCALL_NR_PAGES*PAGE_SIZE);

	pvclock_vdso_info = i;

	for (idx = 0; idx <= (PVCLOCK_FIXMAP_END-PVCLOCK_FIXMAP_BEGIN); idx++) {
		__set_fixmap(PVCLOCK_FIXMAP_BEGIN + idx,
			     __pa_symbol(i) + (idx*PAGE_SIZE),
			     PAGE_KERNEL_VVAR);
	}


	register_task_migration_notifier(&pvclock_migrate);

	return 0;
}
#endif