Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | /* * Based on documentation provided by Dave Jones. Thanks! * * Licensed under the terms of the GNU GPL License version 2. * * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/timex.h> #include <linux/io.h> #include <linux/delay.h> #include <asm/msr.h> #include <asm/tsc.h> #define EPS_BRAND_C7M 0 #define EPS_BRAND_C7 1 #define EPS_BRAND_EDEN 2 #define EPS_BRAND_C3 3 #define EPS_BRAND_C7D 4 struct eps_cpu_data { u32 fsb; struct cpufreq_frequency_table freq_table[]; }; static struct eps_cpu_data *eps_cpu[NR_CPUS]; static unsigned int eps_get(unsigned int cpu) { struct eps_cpu_data *centaur; u32 lo, hi; if (cpu) return 0; centaur = eps_cpu[cpu]; if (centaur == NULL) return 0; /* Return current frequency */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); return centaur->fsb * ((lo >> 8) & 0xff); } static int eps_set_state(struct eps_cpu_data *centaur, unsigned int cpu, u32 dest_state) { struct cpufreq_freqs freqs; u32 lo, hi; int err = 0; int i; freqs.old = eps_get(cpu); freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff); freqs.cpu = cpu; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); /* Wait while CPU is busy */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); i = 0; while (lo & ((1 << 16) | (1 << 17))) { udelay(16); rdmsr(MSR_IA32_PERF_STATUS, lo, hi); i++; if (unlikely(i > 64)) { err = -ENODEV; goto postchange; } } /* Set new multiplier and voltage */ wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0); /* Wait until transition end */ i = 0; do { udelay(16); rdmsr(MSR_IA32_PERF_STATUS, lo, hi); i++; if (unlikely(i > 64)) { err = -ENODEV; goto postchange; } } while (lo & ((1 << 16) | (1 << 17))); /* Return current frequency */ postchange: rdmsr(MSR_IA32_PERF_STATUS, lo, hi); freqs.new = centaur->fsb * ((lo >> 8) & 0xff); #ifdef DEBUG { u8 current_multiplier, current_voltage; /* Print voltage and multiplier */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); current_voltage = lo & 0xff; printk(KERN_INFO "eps: Current voltage = %dmV\n", current_voltage * 16 + 700); current_multiplier = (lo >> 8) & 0xff; printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier); } #endif cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); return err; } static int eps_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct eps_cpu_data *centaur; unsigned int newstate = 0; unsigned int cpu = policy->cpu; unsigned int dest_state; int ret; if (unlikely(eps_cpu[cpu] == NULL)) return -ENODEV; centaur = eps_cpu[cpu]; if (unlikely(cpufreq_frequency_table_target(policy, &eps_cpu[cpu]->freq_table[0], target_freq, relation, &newstate))) { return -EINVAL; } /* Make frequency transition */ dest_state = centaur->freq_table[newstate].index & 0xffff; ret = eps_set_state(centaur, cpu, dest_state); if (ret) printk(KERN_ERR "eps: Timeout!\n"); return ret; } static int eps_verify(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, &eps_cpu[policy->cpu]->freq_table[0]); } static int eps_cpu_init(struct cpufreq_policy *policy) { unsigned int i; u32 lo, hi; u64 val; u8 current_multiplier, current_voltage; u8 max_multiplier, max_voltage; u8 min_multiplier, min_voltage; u8 brand = 0; u32 fsb; struct eps_cpu_data *centaur; struct cpuinfo_x86 *c = &cpu_data(0); struct cpufreq_frequency_table *f_table; int k, step, voltage; int ret; int states; if (policy->cpu != 0) return -ENODEV; /* Check brand */ printk(KERN_INFO "eps: Detected VIA "); switch (c->x86_model) { case 10: rdmsr(0x1153, lo, hi); brand = (((lo >> 2) ^ lo) >> 18) & 3; printk(KERN_CONT "Model A "); break; case 13: rdmsr(0x1154, lo, hi); brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff; printk(KERN_CONT "Model D "); break; } switch (brand) { case EPS_BRAND_C7M: printk(KERN_CONT "C7-M\n"); break; case EPS_BRAND_C7: printk(KERN_CONT "C7\n"); break; case EPS_BRAND_EDEN: printk(KERN_CONT "Eden\n"); break; case EPS_BRAND_C7D: printk(KERN_CONT "C7-D\n"); break; case EPS_BRAND_C3: printk(KERN_CONT "C3\n"); return -ENODEV; break; } /* Enable Enhanced PowerSaver */ rdmsrl(MSR_IA32_MISC_ENABLE, val); if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) { val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP; wrmsrl(MSR_IA32_MISC_ENABLE, val); /* Can be locked at 0 */ rdmsrl(MSR_IA32_MISC_ENABLE, val); if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) { printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n"); return -ENODEV; } } /* Print voltage and multiplier */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); current_voltage = lo & 0xff; printk(KERN_INFO "eps: Current voltage = %dmV\n", current_voltage * 16 + 700); current_multiplier = (lo >> 8) & 0xff; printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier); /* Print limits */ max_voltage = hi & 0xff; printk(KERN_INFO "eps: Highest voltage = %dmV\n", max_voltage * 16 + 700); max_multiplier = (hi >> 8) & 0xff; printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier); min_voltage = (hi >> 16) & 0xff; printk(KERN_INFO "eps: Lowest voltage = %dmV\n", min_voltage * 16 + 700); min_multiplier = (hi >> 24) & 0xff; printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier); /* Sanity checks */ if (current_multiplier == 0 || max_multiplier == 0 || min_multiplier == 0) return -EINVAL; if (current_multiplier > max_multiplier || max_multiplier <= min_multiplier) return -EINVAL; if (current_voltage > 0x1f || max_voltage > 0x1f) return -EINVAL; if (max_voltage < min_voltage) return -EINVAL; /* Calc FSB speed */ fsb = cpu_khz / current_multiplier; /* Calc number of p-states supported */ if (brand == EPS_BRAND_C7M) states = max_multiplier - min_multiplier + 1; else states = 2; /* Allocate private data and frequency table for current cpu */ centaur = kzalloc(sizeof(struct eps_cpu_data) + (states + 1) * sizeof(struct cpufreq_frequency_table), GFP_KERNEL); if (!centaur) return -ENOMEM; eps_cpu[0] = centaur; /* Copy basic values */ centaur->fsb = fsb; /* Fill frequency and MSR value table */ f_table = ¢aur->freq_table[0]; if (brand != EPS_BRAND_C7M) { f_table[0].frequency = fsb * min_multiplier; f_table[0].index = (min_multiplier << 8) | min_voltage; f_table[1].frequency = fsb * max_multiplier; f_table[1].index = (max_multiplier << 8) | max_voltage; f_table[2].frequency = CPUFREQ_TABLE_END; } else { k = 0; step = ((max_voltage - min_voltage) * 256) / (max_multiplier - min_multiplier); for (i = min_multiplier; i <= max_multiplier; i++) { voltage = (k * step) / 256 + min_voltage; f_table[k].frequency = fsb * i; f_table[k].index = (i << 8) | voltage; k++; } f_table[k].frequency = CPUFREQ_TABLE_END; } policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */ policy->cur = fsb * current_multiplier; ret = cpufreq_frequency_table_cpuinfo(policy, ¢aur->freq_table[0]); if (ret) { kfree(centaur); return ret; } cpufreq_frequency_table_get_attr(¢aur->freq_table[0], policy->cpu); return 0; } static int eps_cpu_exit(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; struct eps_cpu_data *centaur; u32 lo, hi; if (eps_cpu[cpu] == NULL) return -ENODEV; centaur = eps_cpu[cpu]; /* Get max frequency */ rdmsr(MSR_IA32_PERF_STATUS, lo, hi); /* Set max frequency */ eps_set_state(centaur, cpu, hi & 0xffff); /* Bye */ cpufreq_frequency_table_put_attr(policy->cpu); kfree(eps_cpu[cpu]); eps_cpu[cpu] = NULL; return 0; } static struct freq_attr *eps_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver eps_driver = { .verify = eps_verify, .target = eps_target, .init = eps_cpu_init, .exit = eps_cpu_exit, .get = eps_get, .name = "e_powersaver", .owner = THIS_MODULE, .attr = eps_attr, }; static int __init eps_init(void) { struct cpuinfo_x86 *c = &cpu_data(0); /* This driver will work only on Centaur C7 processors with * Enhanced SpeedStep/PowerSaver registers */ if (c->x86_vendor != X86_VENDOR_CENTAUR || c->x86 != 6 || c->x86_model < 10) return -ENODEV; if (!cpu_has(c, X86_FEATURE_EST)) return -ENODEV; if (cpufreq_register_driver(&eps_driver)) return -EINVAL; return 0; } static void __exit eps_exit(void) { cpufreq_unregister_driver(&eps_driver); } MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>"); MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's."); MODULE_LICENSE("GPL"); module_init(eps_init); module_exit(eps_exit); |