Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | /* * Copyright (C) 2001,2002,2003 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * BCM1250-specific PCI support * * This module provides the glue between Linux's PCI subsystem * and the hardware. We basically provide glue for accessing * configuration space, and set up the translation for I/O * space accesses. * * To access configuration space, we use ioremap. In the 32-bit * kernel, this consumes either 4 or 8 page table pages, and 16MB of * kernel mapped memory. Hopefully neither of these should be a huge * problem. */ #include <linux/config.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/console.h> #include <asm/io.h> #include <asm/pci_channel.h> #include <asm/sibyte/sb1250_defs.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_scd.h> #include <asm/sibyte/board.h> /* * Macros for calculating offsets into config space given a device * structure or dev/fun/reg */ #define CFGOFFSET(bus,devfn,where) (((bus)<<16) + ((devfn)<<8) + (where)) #define CFGADDR(bus,devfn,where) CFGOFFSET((bus)->number,(devfn),where) static void *cfg_space; #define PCI_BUS_ENABLED 1 #define LDT_BUS_ENABLED 2 #define PCI_DEVICE_MODE 4 static int sb1250_bus_status = 0; #define PCI_BRIDGE_DEVICE 0 #define LDT_BRIDGE_DEVICE 1 #ifdef CONFIG_SIBYTE_HAS_LDT /* * HT's level-sensitive interrupts require EOI, which is generated * through a 4MB memory-mapped region */ unsigned long ldt_eoi_space; #endif /* * Read/write 32-bit values in config space. */ static inline u32 READCFG32(u32 addr) { return *(u32 *) (cfg_space + (addr & ~3)); } static inline void WRITECFG32(u32 addr, u32 data) { *(u32 *) (cfg_space + (addr & ~3)) = data; } int pcibios_map_irq(struct pci_dev *dev, u8 slot, u8 pin) { return dev->irq; } /* * Some checks before doing config cycles: * In PCI Device Mode, hide everything on bus 0 except the LDT host * bridge. Otherwise, access is controlled by bridge MasterEn bits. */ static int sb1250_pci_can_access(struct pci_bus *bus, int devfn) { u32 devno; if (!(sb1250_bus_status & (PCI_BUS_ENABLED | PCI_DEVICE_MODE))) return 0; if (bus->number == 0) { devno = PCI_SLOT(devfn); if (devno == LDT_BRIDGE_DEVICE) return (sb1250_bus_status & LDT_BUS_ENABLED) != 0; else if (sb1250_bus_status & PCI_DEVICE_MODE) return 0; else return 1; } else return 1; } /* * Read/write access functions for various sizes of values * in config space. Return all 1's for disallowed accesses * for a kludgy but adequate simulation of master aborts. */ static int sb1250_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (sb1250_pci_can_access(bus, devfn)) data = READCFG32(CFGADDR(bus, devfn, where)); else data = 0xFFFFFFFF; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int sb1250_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 cfgaddr = CFGADDR(bus, devfn, where); u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (!sb1250_pci_can_access(bus, devfn)) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else data = val; WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } struct pci_ops sb1250_pci_ops = { .read = sb1250_pcibios_read, .write = sb1250_pcibios_write }; static struct resource sb1250_mem_resource = { .name = "SB1250 PCI MEM", .start = 0x14000000UL, .end = 0x17ffffffUL, .flags = IORESOURCE_MEM, }; static struct resource sb1250_io_resource = { .name = "SB1250 IO MEM", .start = 0x14000000UL, .end = 0x17ffffffUL, .flags = IORESOURCE_IO, }; struct pci_controller sb1250_controller = { .pci_ops = &sb1250_pci_ops, .mem_resource = &sb1250_mem_resource, .io_resource = &sb1250_io_resource }; static int __init sb1250_pcibios_init(void) { uint32_t cmdreg; uint64_t reg; extern int pci_probe_only; /* CFE will assign PCI resources */ pci_probe_only = 1; /* set resource limit to avoid errors */ ioport_resource.end = 0x0000ffff; /* 32MB reserved by sb1250 */ iomem_resource.end = 0xffffffff; /* no HT support yet */ cfg_space = ioremap(A_PHYS_LDTPCI_CFG_MATCH_BITS, 16 * 1024 * 1024); /* * See if the PCI bus has been configured by the firmware. */ reg = *((volatile uint64_t *) IOADDR(A_SCD_SYSTEM_CFG)); if (!(reg & M_SYS_PCI_HOST)) { sb1250_bus_status |= PCI_DEVICE_MODE; } else { cmdreg = READCFG32(CFGOFFSET (0, PCI_DEVFN(PCI_BRIDGE_DEVICE, 0), PCI_COMMAND)); if (!(cmdreg & PCI_COMMAND_MASTER)) { printk ("PCI: Skipping PCI probe. Bus is not initialized.\n"); iounmap(cfg_space); return 0; } sb1250_bus_status |= PCI_BUS_ENABLED; } /* * Establish mappings in KSEG2 (kernel virtual) to PCI I/O * space. Use "match bytes" policy to make everything look * little-endian. So, you need to also set * CONFIG_SWAP_IO_SPACE, but this is the combination that * works correctly with most of Linux's drivers. * XXX ehs: Should this happen in PCI Device mode? */ set_io_port_base((unsigned long) ioremap(A_PHYS_LDTPCI_IO_MATCH_BYTES, 65536)); isa_slot_offset = (unsigned long) ioremap(A_PHYS_LDTPCI_IO_MATCH_BYTES_32, 1024 * 1024); #ifdef CONFIG_SIBYTE_HAS_LDT /* * Also check the LDT bridge's enable, just in case we didn't * initialize that one. */ cmdreg = READCFG32(CFGOFFSET(0, PCI_DEVFN(LDT_BRIDGE_DEVICE, 0), PCI_COMMAND)); if (cmdreg & PCI_COMMAND_MASTER) { sb1250_bus_status |= LDT_BUS_ENABLED; /* * Need bits 23:16 to convey vector number. Note that * this consumes 4MB of kernel-mapped memory * (Kseg2/Kseg3) for 32-bit kernel. */ ldt_eoi_space = (unsigned long) ioremap(A_PHYS_LDT_SPECIAL_MATCH_BYTES, 4 * 1024 * 1024); } #endif register_pci_controller(&sb1250_controller); #ifdef CONFIG_VGA_CONSOLE take_over_console(&vga_con, 0, MAX_NR_CONSOLES - 1, 1); #endif return 0; } arch_initcall(sb1250_pcibios_init); struct pci_fixup pcibios_fixups[] = { {0} }; |