Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 | /* * pSeries NUMA support * * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/threads.h> #include <linux/bootmem.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/module.h> #include <linux/nodemask.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/memblock.h> #include <linux/of.h> #include <linux/pfn.h> #include <asm/sparsemem.h> #include <asm/prom.h> #include <asm/system.h> #include <asm/smp.h> static int numa_enabled = 1; static char *cmdline __initdata; static int numa_debug; #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } int numa_cpu_lookup_table[NR_CPUS]; cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; struct pglist_data *node_data[MAX_NUMNODES]; EXPORT_SYMBOL(numa_cpu_lookup_table); EXPORT_SYMBOL(node_to_cpumask_map); EXPORT_SYMBOL(node_data); static int min_common_depth; static int n_mem_addr_cells, n_mem_size_cells; static int form1_affinity; #define MAX_DISTANCE_REF_POINTS 4 static int distance_ref_points_depth; static const unsigned int *distance_ref_points; static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; /* * Allocate node_to_cpumask_map based on number of available nodes * Requires node_possible_map to be valid. * * Note: node_to_cpumask() is not valid until after this is done. */ static void __init setup_node_to_cpumask_map(void) { unsigned int node, num = 0; /* setup nr_node_ids if not done yet */ if (nr_node_ids == MAX_NUMNODES) { for_each_node_mask(node, node_possible_map) num = node; nr_node_ids = num + 1; } /* allocate the map */ for (node = 0; node < nr_node_ids; node++) alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); /* cpumask_of_node() will now work */ dbg("Node to cpumask map for %d nodes\n", nr_node_ids); } static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, unsigned int *nid) { unsigned long long mem; char *p = cmdline; static unsigned int fake_nid; static unsigned long long curr_boundary; /* * Modify node id, iff we started creating NUMA nodes * We want to continue from where we left of the last time */ if (fake_nid) *nid = fake_nid; /* * In case there are no more arguments to parse, the * node_id should be the same as the last fake node id * (we've handled this above). */ if (!p) return 0; mem = memparse(p, &p); if (!mem) return 0; if (mem < curr_boundary) return 0; curr_boundary = mem; if ((end_pfn << PAGE_SHIFT) > mem) { /* * Skip commas and spaces */ while (*p == ',' || *p == ' ' || *p == '\t') p++; cmdline = p; fake_nid++; *nid = fake_nid; dbg("created new fake_node with id %d\n", fake_nid); return 1; } return 0; } /* * get_active_region_work_fn - A helper function for get_node_active_region * Returns datax set to the start_pfn and end_pfn if they contain * the initial value of datax->start_pfn between them * @start_pfn: start page(inclusive) of region to check * @end_pfn: end page(exclusive) of region to check * @datax: comes in with ->start_pfn set to value to search for and * goes out with active range if it contains it * Returns 1 if search value is in range else 0 */ static int __init get_active_region_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax) { struct node_active_region *data; data = (struct node_active_region *)datax; if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) { data->start_pfn = start_pfn; data->end_pfn = end_pfn; return 1; } return 0; } /* * get_node_active_region - Return active region containing start_pfn * Active range returned is empty if none found. * @start_pfn: The page to return the region for. * @node_ar: Returned set to the active region containing start_pfn */ static void __init get_node_active_region(unsigned long start_pfn, struct node_active_region *node_ar) { int nid = early_pfn_to_nid(start_pfn); node_ar->nid = nid; node_ar->start_pfn = start_pfn; node_ar->end_pfn = start_pfn; work_with_active_regions(nid, get_active_region_work_fn, node_ar); } static void __cpuinit map_cpu_to_node(int cpu, int node) { numa_cpu_lookup_table[cpu] = node; dbg("adding cpu %d to node %d\n", cpu, node); if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) cpumask_set_cpu(cpu, node_to_cpumask_map[node]); } #ifdef CONFIG_HOTPLUG_CPU static void unmap_cpu_from_node(unsigned long cpu) { int node = numa_cpu_lookup_table[cpu]; dbg("removing cpu %lu from node %d\n", cpu, node); if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { cpumask_set_cpu(cpu, node_to_cpumask_map[node]); } else { printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", cpu, node); } } #endif /* CONFIG_HOTPLUG_CPU */ /* must hold reference to node during call */ static const int *of_get_associativity(struct device_node *dev) { return of_get_property(dev, "ibm,associativity", NULL); } /* * Returns the property linux,drconf-usable-memory if * it exists (the property exists only in kexec/kdump kernels, * added by kexec-tools) */ static const u32 *of_get_usable_memory(struct device_node *memory) { const u32 *prop; u32 len; prop = of_get_property(memory, "linux,drconf-usable-memory", &len); if (!prop || len < sizeof(unsigned int)) return 0; return prop; } int __node_distance(int a, int b) { int i; int distance = LOCAL_DISTANCE; if (!form1_affinity) return distance; for (i = 0; i < distance_ref_points_depth; i++) { if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) break; /* Double the distance for each NUMA level */ distance *= 2; } return distance; } static void initialize_distance_lookup_table(int nid, const unsigned int *associativity) { int i; if (!form1_affinity) return; for (i = 0; i < distance_ref_points_depth; i++) { distance_lookup_table[nid][i] = associativity[distance_ref_points[i]]; } } /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa * info is found. */ static int of_node_to_nid_single(struct device_node *device) { int nid = -1; const unsigned int *tmp; if (min_common_depth == -1) goto out; tmp = of_get_associativity(device); if (!tmp) goto out; if (tmp[0] >= min_common_depth) nid = tmp[min_common_depth]; /* POWER4 LPAR uses 0xffff as invalid node */ if (nid == 0xffff || nid >= MAX_NUMNODES) nid = -1; if (nid > 0 && tmp[0] >= distance_ref_points_depth) initialize_distance_lookup_table(nid, tmp); out: return nid; } /* Walk the device tree upwards, looking for an associativity id */ int of_node_to_nid(struct device_node *device) { struct device_node *tmp; int nid = -1; of_node_get(device); while (device) { nid = of_node_to_nid_single(device); if (nid != -1) break; tmp = device; device = of_get_parent(tmp); of_node_put(tmp); } of_node_put(device); return nid; } EXPORT_SYMBOL_GPL(of_node_to_nid); static int __init find_min_common_depth(void) { int depth; struct device_node *rtas_root; struct device_node *chosen; const char *vec5; rtas_root = of_find_node_by_path("/rtas"); if (!rtas_root) return -1; /* * This property is a set of 32-bit integers, each representing * an index into the ibm,associativity nodes. * * With form 0 affinity the first integer is for an SMP configuration * (should be all 0's) and the second is for a normal NUMA * configuration. We have only one level of NUMA. * * With form 1 affinity the first integer is the most significant * NUMA boundary and the following are progressively less significant * boundaries. There can be more than one level of NUMA. */ distance_ref_points = of_get_property(rtas_root, "ibm,associativity-reference-points", &distance_ref_points_depth); if (!distance_ref_points) { dbg("NUMA: ibm,associativity-reference-points not found.\n"); goto err; } distance_ref_points_depth /= sizeof(int); #define VEC5_AFFINITY_BYTE 5 #define VEC5_AFFINITY 0x80 chosen = of_find_node_by_path("/chosen"); if (chosen) { vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL); if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) { dbg("Using form 1 affinity\n"); form1_affinity = 1; } } if (form1_affinity) { depth = distance_ref_points[0]; } else { if (distance_ref_points_depth < 2) { printk(KERN_WARNING "NUMA: " "short ibm,associativity-reference-points\n"); goto err; } depth = distance_ref_points[1]; } /* * Warn and cap if the hardware supports more than * MAX_DISTANCE_REF_POINTS domains. */ if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { printk(KERN_WARNING "NUMA: distance array capped at " "%d entries\n", MAX_DISTANCE_REF_POINTS); distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; } of_node_put(rtas_root); return depth; err: of_node_put(rtas_root); return -1; } static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) { struct device_node *memory = NULL; memory = of_find_node_by_type(memory, "memory"); if (!memory) panic("numa.c: No memory nodes found!"); *n_addr_cells = of_n_addr_cells(memory); *n_size_cells = of_n_size_cells(memory); of_node_put(memory); } static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) { unsigned long result = 0; while (n--) { result = (result << 32) | **buf; (*buf)++; } return result; } struct of_drconf_cell { u64 base_addr; u32 drc_index; u32 reserved; u32 aa_index; u32 flags; }; #define DRCONF_MEM_ASSIGNED 0x00000008 #define DRCONF_MEM_AI_INVALID 0x00000040 #define DRCONF_MEM_RESERVED 0x00000080 /* * Read the next memblock list entry from the ibm,dynamic-memory property * and return the information in the provided of_drconf_cell structure. */ static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) { const u32 *cp; drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); cp = *cellp; drmem->drc_index = cp[0]; drmem->reserved = cp[1]; drmem->aa_index = cp[2]; drmem->flags = cp[3]; *cellp = cp + 4; } /* * Retreive and validate the ibm,dynamic-memory property of the device tree. * * The layout of the ibm,dynamic-memory property is a number N of memblock * list entries followed by N memblock list entries. Each memblock list entry * contains information as layed out in the of_drconf_cell struct above. */ static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) { const u32 *prop; u32 len, entries; prop = of_get_property(memory, "ibm,dynamic-memory", &len); if (!prop || len < sizeof(unsigned int)) return 0; entries = *prop++; /* Now that we know the number of entries, revalidate the size * of the property read in to ensure we have everything */ if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) return 0; *dm = prop; return entries; } /* * Retreive and validate the ibm,lmb-size property for drconf memory * from the device tree. */ static u64 of_get_lmb_size(struct device_node *memory) { const u32 *prop; u32 len; prop = of_get_property(memory, "ibm,lmb-size", &len); if (!prop || len < sizeof(unsigned int)) return 0; return read_n_cells(n_mem_size_cells, &prop); } struct assoc_arrays { u32 n_arrays; u32 array_sz; const u32 *arrays; }; /* * Retreive and validate the list of associativity arrays for drconf * memory from the ibm,associativity-lookup-arrays property of the * device tree.. * * The layout of the ibm,associativity-lookup-arrays property is a number N * indicating the number of associativity arrays, followed by a number M * indicating the size of each associativity array, followed by a list * of N associativity arrays. */ static int of_get_assoc_arrays(struct device_node *memory, struct assoc_arrays *aa) { const u32 *prop; u32 len; prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); if (!prop || len < 2 * sizeof(unsigned int)) return -1; aa->n_arrays = *prop++; aa->array_sz = *prop++; /* Now that we know the number of arrrays and size of each array, * revalidate the size of the property read in. */ if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) return -1; aa->arrays = prop; return 0; } /* * This is like of_node_to_nid_single() for memory represented in the * ibm,dynamic-reconfiguration-memory node. */ static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, struct assoc_arrays *aa) { int default_nid = 0; int nid = default_nid; int index; if (min_common_depth > 0 && min_common_depth <= aa->array_sz && !(drmem->flags & DRCONF_MEM_AI_INVALID) && drmem->aa_index < aa->n_arrays) { index = drmem->aa_index * aa->array_sz + min_common_depth - 1; nid = aa->arrays[index]; if (nid == 0xffff || nid >= MAX_NUMNODES) nid = default_nid; } return nid; } /* * Figure out to which domain a cpu belongs and stick it there. * Return the id of the domain used. */ static int __cpuinit numa_setup_cpu(unsigned long lcpu) { int nid = 0; struct device_node *cpu = of_get_cpu_node(lcpu, NULL); if (!cpu) { WARN_ON(1); goto out; } nid = of_node_to_nid_single(cpu); if (nid < 0 || !node_online(nid)) nid = first_online_node; out: map_cpu_to_node(lcpu, nid); of_node_put(cpu); return nid; } static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned long lcpu = (unsigned long)hcpu; int ret = NOTIFY_DONE; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: numa_setup_cpu(lcpu); ret = NOTIFY_OK; break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DEAD: case CPU_DEAD_FROZEN: case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: unmap_cpu_from_node(lcpu); break; ret = NOTIFY_OK; #endif } return ret; } /* * Check and possibly modify a memory region to enforce the memory limit. * * Returns the size the region should have to enforce the memory limit. * This will either be the original value of size, a truncated value, * or zero. If the returned value of size is 0 the region should be * discarded as it lies wholy above the memory limit. */ static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) { /* * We use memblock_end_of_DRAM() in here instead of memory_limit because * we've already adjusted it for the limit and it takes care of * having memory holes below the limit. Also, in the case of * iommu_is_off, memory_limit is not set but is implicitly enforced. */ if (start + size <= memblock_end_of_DRAM()) return size; if (start >= memblock_end_of_DRAM()) return 0; return memblock_end_of_DRAM() - start; } /* * Reads the counter for a given entry in * linux,drconf-usable-memory property */ static inline int __init read_usm_ranges(const u32 **usm) { /* * For each lmb in ibm,dynamic-memory a corresponding * entry in linux,drconf-usable-memory property contains * a counter followed by that many (base, size) duple. * read the counter from linux,drconf-usable-memory */ return read_n_cells(n_mem_size_cells, usm); } /* * Extract NUMA information from the ibm,dynamic-reconfiguration-memory * node. This assumes n_mem_{addr,size}_cells have been set. */ static void __init parse_drconf_memory(struct device_node *memory) { const u32 *dm, *usm; unsigned int n, rc, ranges, is_kexec_kdump = 0; unsigned long lmb_size, base, size, sz; int nid; struct assoc_arrays aa; n = of_get_drconf_memory(memory, &dm); if (!n) return; lmb_size = of_get_lmb_size(memory); if (!lmb_size) return; rc = of_get_assoc_arrays(memory, &aa); if (rc) return; /* check if this is a kexec/kdump kernel */ usm = of_get_usable_memory(memory); if (usm != NULL) is_kexec_kdump = 1; for (; n != 0; --n) { struct of_drconf_cell drmem; read_drconf_cell(&drmem, &dm); /* skip this block if the reserved bit is set in flags (0x80) or if the block is not assigned to this partition (0x8) */ if ((drmem.flags & DRCONF_MEM_RESERVED) || !(drmem.flags & DRCONF_MEM_ASSIGNED)) continue; base = drmem.base_addr; size = lmb_size; ranges = 1; if (is_kexec_kdump) { ranges = read_usm_ranges(&usm); if (!ranges) /* there are no (base, size) duple */ continue; } do { if (is_kexec_kdump) { base = read_n_cells(n_mem_addr_cells, &usm); size = read_n_cells(n_mem_size_cells, &usm); } nid = of_drconf_to_nid_single(&drmem, &aa); fake_numa_create_new_node( ((base + size) >> PAGE_SHIFT), &nid); node_set_online(nid); sz = numa_enforce_memory_limit(base, size); if (sz) add_active_range(nid, base >> PAGE_SHIFT, (base >> PAGE_SHIFT) + (sz >> PAGE_SHIFT)); } while (--ranges); } } static int __init parse_numa_properties(void) { struct device_node *cpu = NULL; struct device_node *memory = NULL; int default_nid = 0; unsigned long i; if (numa_enabled == 0) { printk(KERN_WARNING "NUMA disabled by user\n"); return -1; } min_common_depth = find_min_common_depth(); if (min_common_depth < 0) return min_common_depth; dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); /* * Even though we connect cpus to numa domains later in SMP * init, we need to know the node ids now. This is because * each node to be onlined must have NODE_DATA etc backing it. */ for_each_present_cpu(i) { int nid; cpu = of_get_cpu_node(i, NULL); BUG_ON(!cpu); nid = of_node_to_nid_single(cpu); of_node_put(cpu); /* * Don't fall back to default_nid yet -- we will plug * cpus into nodes once the memory scan has discovered * the topology. */ if (nid < 0) continue; node_set_online(nid); } get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); memory = NULL; while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { unsigned long start; unsigned long size; int nid; int ranges; const unsigned int *memcell_buf; unsigned int len; memcell_buf = of_get_property(memory, "linux,usable-memory", &len); if (!memcell_buf || len <= 0) memcell_buf = of_get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; /* ranges in cell */ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); new_range: /* these are order-sensitive, and modify the buffer pointer */ start = read_n_cells(n_mem_addr_cells, &memcell_buf); size = read_n_cells(n_mem_size_cells, &memcell_buf); /* * Assumption: either all memory nodes or none will * have associativity properties. If none, then * everything goes to default_nid. */ nid = of_node_to_nid_single(memory); if (nid < 0) nid = default_nid; fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); node_set_online(nid); if (!(size = numa_enforce_memory_limit(start, size))) { if (--ranges) goto new_range; else continue; } add_active_range(nid, start >> PAGE_SHIFT, (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT)); if (--ranges) goto new_range; } /* * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory * property in the ibm,dynamic-reconfiguration-memory node. */ memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) parse_drconf_memory(memory); return 0; } static void __init setup_nonnuma(void) { unsigned long top_of_ram = memblock_end_of_DRAM(); unsigned long total_ram = memblock_phys_mem_size(); unsigned long start_pfn, end_pfn; unsigned int nid = 0; struct memblock_region *reg; printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_DEBUG "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); for_each_memblock(memory, reg) { start_pfn = memblock_region_memory_base_pfn(reg); end_pfn = memblock_region_memory_end_pfn(reg); fake_numa_create_new_node(end_pfn, &nid); add_active_range(nid, start_pfn, end_pfn); node_set_online(nid); } } void __init dump_numa_cpu_topology(void) { unsigned int node; unsigned int cpu, count; if (min_common_depth == -1 || !numa_enabled) return; for_each_online_node(node) { printk(KERN_DEBUG "Node %d CPUs:", node); count = 0; /* * If we used a CPU iterator here we would miss printing * the holes in the cpumap. */ for (cpu = 0; cpu < nr_cpu_ids; cpu++) { if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { if (count == 0) printk(" %u", cpu); ++count; } else { if (count > 1) printk("-%u", cpu - 1); count = 0; } } if (count > 1) printk("-%u", nr_cpu_ids - 1); printk("\n"); } } static void __init dump_numa_memory_topology(void) { unsigned int node; unsigned int count; if (min_common_depth == -1 || !numa_enabled) return; for_each_online_node(node) { unsigned long i; printk(KERN_DEBUG "Node %d Memory:", node); count = 0; for (i = 0; i < memblock_end_of_DRAM(); i += (1 << SECTION_SIZE_BITS)) { if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { if (count == 0) printk(" 0x%lx", i); ++count; } else { if (count > 0) printk("-0x%lx", i); count = 0; } } if (count > 0) printk("-0x%lx", i); printk("\n"); } } /* * Allocate some memory, satisfying the memblock or bootmem allocator where * required. nid is the preferred node and end is the physical address of * the highest address in the node. * * Returns the virtual address of the memory. */ static void __init *careful_zallocation(int nid, unsigned long size, unsigned long align, unsigned long end_pfn) { void *ret; int new_nid; unsigned long ret_paddr; ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); /* retry over all memory */ if (!ret_paddr) ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); if (!ret_paddr) panic("numa.c: cannot allocate %lu bytes for node %d", size, nid); ret = __va(ret_paddr); /* * We initialize the nodes in numeric order: 0, 1, 2... * and hand over control from the MEMBLOCK allocator to the * bootmem allocator. If this function is called for * node 5, then we know that all nodes <5 are using the * bootmem allocator instead of the MEMBLOCK allocator. * * So, check the nid from which this allocation came * and double check to see if we need to use bootmem * instead of the MEMBLOCK. We don't free the MEMBLOCK memory * since it would be useless. */ new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); if (new_nid < nid) { ret = __alloc_bootmem_node(NODE_DATA(new_nid), size, align, 0); dbg("alloc_bootmem %p %lx\n", ret, size); } memset(ret, 0, size); return ret; } static struct notifier_block __cpuinitdata ppc64_numa_nb = { .notifier_call = cpu_numa_callback, .priority = 1 /* Must run before sched domains notifier. */ }; static void mark_reserved_regions_for_nid(int nid) { struct pglist_data *node = NODE_DATA(nid); struct memblock_region *reg; for_each_memblock(reserved, reg) { unsigned long physbase = reg->base; unsigned long size = reg->size; unsigned long start_pfn = physbase >> PAGE_SHIFT; unsigned long end_pfn = PFN_UP(physbase + size); struct node_active_region node_ar; unsigned long node_end_pfn = node->node_start_pfn + node->node_spanned_pages; /* * Check to make sure that this memblock.reserved area is * within the bounds of the node that we care about. * Checking the nid of the start and end points is not * sufficient because the reserved area could span the * entire node. */ if (end_pfn <= node->node_start_pfn || start_pfn >= node_end_pfn) continue; get_node_active_region(start_pfn, &node_ar); while (start_pfn < end_pfn && node_ar.start_pfn < node_ar.end_pfn) { unsigned long reserve_size = size; /* * if reserved region extends past active region * then trim size to active region */ if (end_pfn > node_ar.end_pfn) reserve_size = (node_ar.end_pfn << PAGE_SHIFT) - physbase; /* * Only worry about *this* node, others may not * yet have valid NODE_DATA(). */ if (node_ar.nid == nid) { dbg("reserve_bootmem %lx %lx nid=%d\n", physbase, reserve_size, node_ar.nid); reserve_bootmem_node(NODE_DATA(node_ar.nid), physbase, reserve_size, BOOTMEM_DEFAULT); } /* * if reserved region is contained in the active region * then done. */ if (end_pfn <= node_ar.end_pfn) break; /* * reserved region extends past the active region * get next active region that contains this * reserved region */ start_pfn = node_ar.end_pfn; physbase = start_pfn << PAGE_SHIFT; size = size - reserve_size; get_node_active_region(start_pfn, &node_ar); } } } void __init do_init_bootmem(void) { int nid; min_low_pfn = 0; max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; max_pfn = max_low_pfn; if (parse_numa_properties()) setup_nonnuma(); else dump_numa_memory_topology(); for_each_online_node(nid) { unsigned long start_pfn, end_pfn; void *bootmem_vaddr; unsigned long bootmap_pages; get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); /* * Allocate the node structure node local if possible * * Be careful moving this around, as it relies on all * previous nodes' bootmem to be initialized and have * all reserved areas marked. */ NODE_DATA(nid) = careful_zallocation(nid, sizeof(struct pglist_data), SMP_CACHE_BYTES, end_pfn); dbg("node %d\n", nid); dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; NODE_DATA(nid)->node_start_pfn = start_pfn; NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; if (NODE_DATA(nid)->node_spanned_pages == 0) continue; dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); bootmem_vaddr = careful_zallocation(nid, bootmap_pages << PAGE_SHIFT, PAGE_SIZE, end_pfn); dbg("bootmap_vaddr = %p\n", bootmem_vaddr); init_bootmem_node(NODE_DATA(nid), __pa(bootmem_vaddr) >> PAGE_SHIFT, start_pfn, end_pfn); free_bootmem_with_active_regions(nid, end_pfn); /* * Be very careful about moving this around. Future * calls to careful_zallocation() depend on this getting * done correctly. */ mark_reserved_regions_for_nid(nid); sparse_memory_present_with_active_regions(nid); } init_bootmem_done = 1; /* * Now bootmem is initialised we can create the node to cpumask * lookup tables and setup the cpu callback to populate them. */ setup_node_to_cpumask_map(); register_cpu_notifier(&ppc64_numa_nb); cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, (void *)(unsigned long)boot_cpuid); } void __init paging_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; free_area_init_nodes(max_zone_pfns); } static int __init early_numa(char *p) { if (!p) return 0; if (strstr(p, "off")) numa_enabled = 0; if (strstr(p, "debug")) numa_debug = 1; p = strstr(p, "fake="); if (p) cmdline = p + strlen("fake="); return 0; } early_param("numa", early_numa); #ifdef CONFIG_MEMORY_HOTPLUG /* * Find the node associated with a hot added memory section for * memory represented in the device tree by the property * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. */ static int hot_add_drconf_scn_to_nid(struct device_node *memory, unsigned long scn_addr) { const u32 *dm; unsigned int drconf_cell_cnt, rc; unsigned long lmb_size; struct assoc_arrays aa; int nid = -1; drconf_cell_cnt = of_get_drconf_memory(memory, &dm); if (!drconf_cell_cnt) return -1; lmb_size = of_get_lmb_size(memory); if (!lmb_size) return -1; rc = of_get_assoc_arrays(memory, &aa); if (rc) return -1; for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { struct of_drconf_cell drmem; read_drconf_cell(&drmem, &dm); /* skip this block if it is reserved or not assigned to * this partition */ if ((drmem.flags & DRCONF_MEM_RESERVED) || !(drmem.flags & DRCONF_MEM_ASSIGNED)) continue; if ((scn_addr < drmem.base_addr) || (scn_addr >= (drmem.base_addr + lmb_size))) continue; nid = of_drconf_to_nid_single(&drmem, &aa); break; } return nid; } /* * Find the node associated with a hot added memory section for memory * represented in the device tree as a node (i.e. memory@XXXX) for * each memblock. */ int hot_add_node_scn_to_nid(unsigned long scn_addr) { struct device_node *memory = NULL; int nid = -1; while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { unsigned long start, size; int ranges; const unsigned int *memcell_buf; unsigned int len; memcell_buf = of_get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; /* ranges in cell */ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); while (ranges--) { start = read_n_cells(n_mem_addr_cells, &memcell_buf); size = read_n_cells(n_mem_size_cells, &memcell_buf); if ((scn_addr < start) || (scn_addr >= (start + size))) continue; nid = of_node_to_nid_single(memory); break; } of_node_put(memory); if (nid >= 0) break; } return nid; } /* * Find the node associated with a hot added memory section. Section * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that * sections are fully contained within a single MEMBLOCK. */ int hot_add_scn_to_nid(unsigned long scn_addr) { struct device_node *memory = NULL; int nid, found = 0; if (!numa_enabled || (min_common_depth < 0)) return first_online_node; memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) { nid = hot_add_drconf_scn_to_nid(memory, scn_addr); of_node_put(memory); } else { nid = hot_add_node_scn_to_nid(scn_addr); } if (nid < 0 || !node_online(nid)) nid = first_online_node; if (NODE_DATA(nid)->node_spanned_pages) return nid; for_each_online_node(nid) { if (NODE_DATA(nid)->node_spanned_pages) { found = 1; break; } } BUG_ON(!found); return nid; } #endif /* CONFIG_MEMORY_HOTPLUG */ |