Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | /* * Cryptographic API. * * Support for VIA PadLock hardware crypto engine. * * Copyright (c) 2006 Michal Ludvig <michal@logix.cz> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include <crypto/algapi.h> #include <crypto/sha.h> #include <linux/err.h> #include <linux/module.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/cryptohash.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/scatterlist.h> #include <asm/i387.h> #include "padlock.h" #define SHA1_DEFAULT_FALLBACK "sha1-generic" #define SHA256_DEFAULT_FALLBACK "sha256-generic" struct padlock_sha_ctx { char *data; size_t used; int bypass; void (*f_sha_padlock)(const char *in, char *out, int count); struct hash_desc fallback; }; static inline struct padlock_sha_ctx *ctx(struct crypto_tfm *tfm) { return crypto_tfm_ctx(tfm); } /* We'll need aligned address on the stack */ #define NEAREST_ALIGNED(ptr) \ ((void *)ALIGN((size_t)(ptr), PADLOCK_ALIGNMENT)) static struct crypto_alg sha1_alg, sha256_alg; static void padlock_sha_bypass(struct crypto_tfm *tfm) { if (ctx(tfm)->bypass) return; crypto_hash_init(&ctx(tfm)->fallback); if (ctx(tfm)->data && ctx(tfm)->used) { struct scatterlist sg; sg_init_one(&sg, ctx(tfm)->data, ctx(tfm)->used); crypto_hash_update(&ctx(tfm)->fallback, &sg, sg.length); } ctx(tfm)->used = 0; ctx(tfm)->bypass = 1; } static void padlock_sha_init(struct crypto_tfm *tfm) { ctx(tfm)->used = 0; ctx(tfm)->bypass = 0; } static void padlock_sha_update(struct crypto_tfm *tfm, const uint8_t *data, unsigned int length) { /* Our buffer is always one page. */ if (unlikely(!ctx(tfm)->bypass && (ctx(tfm)->used + length > PAGE_SIZE))) padlock_sha_bypass(tfm); if (unlikely(ctx(tfm)->bypass)) { struct scatterlist sg; sg_init_one(&sg, (uint8_t *)data, length); crypto_hash_update(&ctx(tfm)->fallback, &sg, length); return; } memcpy(ctx(tfm)->data + ctx(tfm)->used, data, length); ctx(tfm)->used += length; } static inline void padlock_output_block(uint32_t *src, uint32_t *dst, size_t count) { while (count--) *dst++ = swab32(*src++); } static void padlock_do_sha1(const char *in, char *out, int count) { /* We can't store directly to *out as it may be unaligned. */ /* BTW Don't reduce the buffer size below 128 Bytes! * PadLock microcode needs it that big. */ char buf[128+16]; char *result = NEAREST_ALIGNED(buf); int ts_state; ((uint32_t *)result)[0] = SHA1_H0; ((uint32_t *)result)[1] = SHA1_H1; ((uint32_t *)result)[2] = SHA1_H2; ((uint32_t *)result)[3] = SHA1_H3; ((uint32_t *)result)[4] = SHA1_H4; /* prevent taking the spurious DNA fault with padlock. */ ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */ : "+S"(in), "+D"(result) : "c"(count), "a"(0)); irq_ts_restore(ts_state); padlock_output_block((uint32_t *)result, (uint32_t *)out, 5); } static void padlock_do_sha256(const char *in, char *out, int count) { /* We can't store directly to *out as it may be unaligned. */ /* BTW Don't reduce the buffer size below 128 Bytes! * PadLock microcode needs it that big. */ char buf[128+16]; char *result = NEAREST_ALIGNED(buf); int ts_state; ((uint32_t *)result)[0] = SHA256_H0; ((uint32_t *)result)[1] = SHA256_H1; ((uint32_t *)result)[2] = SHA256_H2; ((uint32_t *)result)[3] = SHA256_H3; ((uint32_t *)result)[4] = SHA256_H4; ((uint32_t *)result)[5] = SHA256_H5; ((uint32_t *)result)[6] = SHA256_H6; ((uint32_t *)result)[7] = SHA256_H7; /* prevent taking the spurious DNA fault with padlock. */ ts_state = irq_ts_save(); asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */ : "+S"(in), "+D"(result) : "c"(count), "a"(0)); irq_ts_restore(ts_state); padlock_output_block((uint32_t *)result, (uint32_t *)out, 8); } static void padlock_sha_final(struct crypto_tfm *tfm, uint8_t *out) { if (unlikely(ctx(tfm)->bypass)) { crypto_hash_final(&ctx(tfm)->fallback, out); ctx(tfm)->bypass = 0; return; } /* Pass the input buffer to PadLock microcode... */ ctx(tfm)->f_sha_padlock(ctx(tfm)->data, out, ctx(tfm)->used); ctx(tfm)->used = 0; } static int padlock_cra_init(struct crypto_tfm *tfm) { const char *fallback_driver_name = tfm->__crt_alg->cra_name; struct crypto_hash *fallback_tfm; /* For now we'll allocate one page. This * could eventually be configurable one day. */ ctx(tfm)->data = (char *)__get_free_page(GFP_KERNEL); if (!ctx(tfm)->data) return -ENOMEM; /* Allocate a fallback and abort if it failed. */ fallback_tfm = crypto_alloc_hash(fallback_driver_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback_tfm)) { printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n", fallback_driver_name); free_page((unsigned long)(ctx(tfm)->data)); return PTR_ERR(fallback_tfm); } ctx(tfm)->fallback.tfm = fallback_tfm; return 0; } static int padlock_sha1_cra_init(struct crypto_tfm *tfm) { ctx(tfm)->f_sha_padlock = padlock_do_sha1; return padlock_cra_init(tfm); } static int padlock_sha256_cra_init(struct crypto_tfm *tfm) { ctx(tfm)->f_sha_padlock = padlock_do_sha256; return padlock_cra_init(tfm); } static void padlock_cra_exit(struct crypto_tfm *tfm) { if (ctx(tfm)->data) { free_page((unsigned long)(ctx(tfm)->data)); ctx(tfm)->data = NULL; } crypto_free_hash(ctx(tfm)->fallback.tfm); ctx(tfm)->fallback.tfm = NULL; } static struct crypto_alg sha1_alg = { .cra_name = "sha1", .cra_driver_name = "sha1-padlock", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_DIGEST | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct padlock_sha_ctx), .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(sha1_alg.cra_list), .cra_init = padlock_sha1_cra_init, .cra_exit = padlock_cra_exit, .cra_u = { .digest = { .dia_digestsize = SHA1_DIGEST_SIZE, .dia_init = padlock_sha_init, .dia_update = padlock_sha_update, .dia_final = padlock_sha_final, } } }; static struct crypto_alg sha256_alg = { .cra_name = "sha256", .cra_driver_name = "sha256-padlock", .cra_priority = PADLOCK_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_DIGEST | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct padlock_sha_ctx), .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(sha256_alg.cra_list), .cra_init = padlock_sha256_cra_init, .cra_exit = padlock_cra_exit, .cra_u = { .digest = { .dia_digestsize = SHA256_DIGEST_SIZE, .dia_init = padlock_sha_init, .dia_update = padlock_sha_update, .dia_final = padlock_sha_final, } } }; static int __init padlock_init(void) { int rc = -ENODEV; if (!cpu_has_phe) { printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n"); return -ENODEV; } if (!cpu_has_phe_enabled) { printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); return -ENODEV; } rc = crypto_register_alg(&sha1_alg); if (rc) goto out; rc = crypto_register_alg(&sha256_alg); if (rc) goto out_unreg1; printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n"); return 0; out_unreg1: crypto_unregister_alg(&sha1_alg); out: printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n"); return rc; } static void __exit padlock_fini(void) { crypto_unregister_alg(&sha1_alg); crypto_unregister_alg(&sha256_alg); } module_init(padlock_init); module_exit(padlock_fini); MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support."); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Ludvig"); MODULE_ALIAS("sha1-all"); MODULE_ALIAS("sha256-all"); MODULE_ALIAS("sha1-padlock"); MODULE_ALIAS("sha256-padlock"); |