Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | // ------------------------------------------------------------------------- // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. // All rights reserved. // // LICENSE TERMS // // The free distribution and use of this software in both source and binary // form is allowed (with or without changes) provided that: // // 1. distributions of this source code include the above copyright // notice, this list of conditions and the following disclaimer// // // 2. distributions in binary form include the above copyright // notice, this list of conditions and the following disclaimer // in the documentation and/or other associated materials// // // 3. the copyright holder's name is not used to endorse products // built using this software without specific written permission. // // // ALTERNATIVELY, provided that this notice is retained in full, this product // may be distributed under the terms of the GNU General Public License (GPL), // in which case the provisions of the GPL apply INSTEAD OF those given above. // // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> // DISCLAIMER // // This software is provided 'as is' with no explicit or implied warranties // in respect of its properties including, but not limited to, correctness // and fitness for purpose. // ------------------------------------------------------------------------- // Issue Date: 29/07/2002 .file "aes-i586-asm.S" .text #include <asm/asm-offsets.h> #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) /* offsets to parameters with one register pushed onto stack */ #define tfm 8 #define out_blk 12 #define in_blk 16 /* offsets in crypto_tfm structure */ #define ekey (crypto_tfm_ctx_offset + 0) #define nrnd (crypto_tfm_ctx_offset + 256) #define dkey (crypto_tfm_ctx_offset + 260) // register mapping for encrypt and decrypt subroutines #define r0 eax #define r1 ebx #define r2 ecx #define r3 edx #define r4 esi #define r5 edi #define eaxl al #define eaxh ah #define ebxl bl #define ebxh bh #define ecxl cl #define ecxh ch #define edxl dl #define edxh dh #define _h(reg) reg##h #define h(reg) _h(reg) #define _l(reg) reg##l #define l(reg) _l(reg) // This macro takes a 32-bit word representing a column and uses // each of its four bytes to index into four tables of 256 32-bit // words to obtain values that are then xored into the appropriate // output registers r0, r1, r4 or r5. // Parameters: // table table base address // %1 out_state[0] // %2 out_state[1] // %3 out_state[2] // %4 out_state[3] // idx input register for the round (destroyed) // tmp scratch register for the round // sched key schedule #define do_col(table, a1,a2,a3,a4, idx, tmp) \ movzx %l(idx),%tmp; \ xor table(,%tmp,4),%a1; \ movzx %h(idx),%tmp; \ shr $16,%idx; \ xor table+tlen(,%tmp,4),%a2; \ movzx %l(idx),%tmp; \ movzx %h(idx),%idx; \ xor table+2*tlen(,%tmp,4),%a3; \ xor table+3*tlen(,%idx,4),%a4; // initialise output registers from the key schedule // NB1: original value of a3 is in idx on exit // NB2: original values of a1,a2,a4 aren't used #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ mov 0 sched,%a1; \ movzx %l(idx),%tmp; \ mov 12 sched,%a2; \ xor table(,%tmp,4),%a1; \ mov 4 sched,%a4; \ movzx %h(idx),%tmp; \ shr $16,%idx; \ xor table+tlen(,%tmp,4),%a2; \ movzx %l(idx),%tmp; \ movzx %h(idx),%idx; \ xor table+3*tlen(,%idx,4),%a4; \ mov %a3,%idx; \ mov 8 sched,%a3; \ xor table+2*tlen(,%tmp,4),%a3; // initialise output registers from the key schedule // NB1: original value of a3 is in idx on exit // NB2: original values of a1,a2,a4 aren't used #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ mov 0 sched,%a1; \ movzx %l(idx),%tmp; \ mov 4 sched,%a2; \ xor table(,%tmp,4),%a1; \ mov 12 sched,%a4; \ movzx %h(idx),%tmp; \ shr $16,%idx; \ xor table+tlen(,%tmp,4),%a2; \ movzx %l(idx),%tmp; \ movzx %h(idx),%idx; \ xor table+3*tlen(,%idx,4),%a4; \ mov %a3,%idx; \ mov 8 sched,%a3; \ xor table+2*tlen(,%tmp,4),%a3; // original Gladman had conditional saves to MMX regs. #define save(a1, a2) \ mov %a2,4*a1(%esp) #define restore(a1, a2) \ mov 4*a2(%esp),%a1 // These macros perform a forward encryption cycle. They are entered with // the first previous round column values in r0,r1,r4,r5 and // exit with the final values in the same registers, using stack // for temporary storage. // round column values // on entry: r0,r1,r4,r5 // on exit: r2,r1,r4,r5 #define fwd_rnd1(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ restore(r0,0); \ do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ restore(r0,1); \ do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ // round column values // on entry: r2,r1,r4,r5 // on exit: r0,r1,r4,r5 #define fwd_rnd2(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ restore(r2,0); \ do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ restore(r2,1); \ do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ // These macros performs an inverse encryption cycle. They are entered with // the first previous round column values in r0,r1,r4,r5 and // exit with the final values in the same registers, using stack // for temporary storage // round column values // on entry: r0,r1,r4,r5 // on exit: r2,r1,r4,r5 #define inv_rnd1(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ restore(r0,0); \ do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ restore(r0,1); \ do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ // round column values // on entry: r2,r1,r4,r5 // on exit: r0,r1,r4,r5 #define inv_rnd2(arg, table) \ save (0,r1); \ save (1,r5); \ \ /* compute new column values */ \ do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ restore(r2,0); \ do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ restore(r2,1); \ do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ // AES (Rijndael) Encryption Subroutine /* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ .global aes_enc_blk .extern ft_tab .extern fl_tab .align 4 aes_enc_blk: push %ebp mov tfm(%esp),%ebp // CAUTION: the order and the values used in these assigns // rely on the register mappings 1: push %ebx mov in_blk+4(%esp),%r2 push %esi mov nrnd(%ebp),%r3 // number of rounds push %edi #if ekey != 0 lea ekey(%ebp),%ebp // key pointer #endif // input four columns and xor in first round key mov (%r2),%r0 mov 4(%r2),%r1 mov 8(%r2),%r4 mov 12(%r2),%r5 xor (%ebp),%r0 xor 4(%ebp),%r1 xor 8(%ebp),%r4 xor 12(%ebp),%r5 sub $8,%esp // space for register saves on stack add $16,%ebp // increment to next round key cmp $12,%r3 jb 4f // 10 rounds for 128-bit key lea 32(%ebp),%ebp je 3f // 12 rounds for 192-bit key lea 32(%ebp),%ebp 2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key fwd_rnd2( -48(%ebp) ,ft_tab) 3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key fwd_rnd2( -16(%ebp) ,ft_tab) 4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key fwd_rnd2( +16(%ebp) ,ft_tab) fwd_rnd1( +32(%ebp) ,ft_tab) fwd_rnd2( +48(%ebp) ,ft_tab) fwd_rnd1( +64(%ebp) ,ft_tab) fwd_rnd2( +80(%ebp) ,ft_tab) fwd_rnd1( +96(%ebp) ,ft_tab) fwd_rnd2(+112(%ebp) ,ft_tab) fwd_rnd1(+128(%ebp) ,ft_tab) fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table // move final values to the output array. CAUTION: the // order of these assigns rely on the register mappings add $8,%esp mov out_blk+12(%esp),%ebp mov %r5,12(%ebp) pop %edi mov %r4,8(%ebp) pop %esi mov %r1,4(%ebp) pop %ebx mov %r0,(%ebp) pop %ebp mov $1,%eax ret // AES (Rijndael) Decryption Subroutine /* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ .global aes_dec_blk .extern it_tab .extern il_tab .align 4 aes_dec_blk: push %ebp mov tfm(%esp),%ebp // CAUTION: the order and the values used in these assigns // rely on the register mappings 1: push %ebx mov in_blk+4(%esp),%r2 push %esi mov nrnd(%ebp),%r3 // number of rounds push %edi #if dkey != 0 lea dkey(%ebp),%ebp // key pointer #endif mov %r3,%r0 shl $4,%r0 add %r0,%ebp // input four columns and xor in first round key mov (%r2),%r0 mov 4(%r2),%r1 mov 8(%r2),%r4 mov 12(%r2),%r5 xor (%ebp),%r0 xor 4(%ebp),%r1 xor 8(%ebp),%r4 xor 12(%ebp),%r5 sub $8,%esp // space for register saves on stack sub $16,%ebp // increment to next round key cmp $12,%r3 jb 4f // 10 rounds for 128-bit key lea -32(%ebp),%ebp je 3f // 12 rounds for 192-bit key lea -32(%ebp),%ebp 2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key inv_rnd2( +48(%ebp), it_tab) 3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key inv_rnd2( +16(%ebp), it_tab) 4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key inv_rnd2( -16(%ebp), it_tab) inv_rnd1( -32(%ebp), it_tab) inv_rnd2( -48(%ebp), it_tab) inv_rnd1( -64(%ebp), it_tab) inv_rnd2( -80(%ebp), it_tab) inv_rnd1( -96(%ebp), it_tab) inv_rnd2(-112(%ebp), it_tab) inv_rnd1(-128(%ebp), it_tab) inv_rnd2(-144(%ebp), il_tab) // last round uses a different table // move final values to the output array. CAUTION: the // order of these assigns rely on the register mappings add $8,%esp mov out_blk+12(%esp),%ebp mov %r5,12(%ebp) pop %edi mov %r4,8(%ebp) pop %esi mov %r1,4(%ebp) pop %ebx mov %r0,(%ebp) pop %ebp mov $1,%eax ret |