Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved. * * Routines for PCI DMA mapping. See Documentation/DMA-API.txt for * a description of how these routines should be used. */ #include <linux/module.h> #include <asm/dma.h> #include <asm/sn/pcibr_provider.h> #include <asm/sn/pcibus_provider_defs.h> #include <asm/sn/pcidev.h> #include <asm/sn/sn_sal.h> #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) /** * sn_dma_supported - test a DMA mask * @dev: device to test * @mask: DMA mask to test * * Return whether the given PCI device DMA address mask can be supported * properly. For example, if your device can only drive the low 24-bits * during PCI bus mastering, then you would pass 0x00ffffff as the mask to * this function. Of course, SN only supports devices that have 32 or more * address bits when using the PMU. */ int sn_dma_supported(struct device *dev, u64 mask) { BUG_ON(dev->bus != &pci_bus_type); if (mask < 0x7fffffff) return 0; return 1; } EXPORT_SYMBOL(sn_dma_supported); /** * sn_dma_set_mask - set the DMA mask * @dev: device to set * @dma_mask: new mask * * Set @dev's DMA mask if the hw supports it. */ int sn_dma_set_mask(struct device *dev, u64 dma_mask) { BUG_ON(dev->bus != &pci_bus_type); if (!sn_dma_supported(dev, dma_mask)) return 0; *dev->dma_mask = dma_mask; return 1; } EXPORT_SYMBOL(sn_dma_set_mask); /** * sn_dma_alloc_coherent - allocate memory for coherent DMA * @dev: device to allocate for * @size: size of the region * @dma_handle: DMA (bus) address * @flags: memory allocation flags * * dma_alloc_coherent() returns a pointer to a memory region suitable for * coherent DMA traffic to/from a PCI device. On SN platforms, this means * that @dma_handle will have the %PCIIO_DMA_CMD flag set. * * This interface is usually used for "command" streams (e.g. the command * queue for a SCSI controller). See Documentation/DMA-API.txt for * more information. */ void *sn_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t * dma_handle, gfp_t flags) { void *cpuaddr; unsigned long phys_addr; int node; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); /* * Allocate the memory. */ node = pcibus_to_node(pdev->bus); if (likely(node >=0)) { struct page *p = alloc_pages_node(node, flags, get_order(size)); if (likely(p)) cpuaddr = page_address(p); else return NULL; } else cpuaddr = (void *)__get_free_pages(flags, get_order(size)); if (unlikely(!cpuaddr)) return NULL; memset(cpuaddr, 0x0, size); /* physical addr. of the memory we just got */ phys_addr = __pa(cpuaddr); /* * 64 bit address translations should never fail. * 32 bit translations can fail if there are insufficient mapping * resources. */ *dma_handle = provider->dma_map_consistent(pdev, phys_addr, size); if (!*dma_handle) { printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); free_pages((unsigned long)cpuaddr, get_order(size)); return NULL; } return cpuaddr; } EXPORT_SYMBOL(sn_dma_alloc_coherent); /** * sn_pci_free_coherent - free memory associated with coherent DMAable region * @dev: device to free for * @size: size to free * @cpu_addr: kernel virtual address to free * @dma_handle: DMA address associated with this region * * Frees the memory allocated by dma_alloc_coherent(), potentially unmapping * any associated IOMMU mappings. */ void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); provider->dma_unmap(pdev, dma_handle, 0); free_pages((unsigned long)cpu_addr, get_order(size)); } EXPORT_SYMBOL(sn_dma_free_coherent); /** * sn_dma_map_single - map a single page for DMA * @dev: device to map for * @cpu_addr: kernel virtual address of the region to map * @size: size of the region * @direction: DMA direction * * Map the region pointed to by @cpu_addr for DMA and return the * DMA address. * * We map this to the one step pcibr_dmamap_trans interface rather than * the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have * no way of saving the dmamap handle from the alloc to later free * (which is pretty much unacceptable). * * TODO: simplify our interface; * figure out how to save dmamap handle so can use two step. */ dma_addr_t sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size, int direction) { dma_addr_t dma_addr; unsigned long phys_addr; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); phys_addr = __pa(cpu_addr); dma_addr = provider->dma_map(pdev, phys_addr, size); if (!dma_addr) { printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); return 0; } return dma_addr; } EXPORT_SYMBOL(sn_dma_map_single); /** * sn_dma_unmap_single - unamp a DMA mapped page * @dev: device to sync * @dma_addr: DMA address to sync * @size: size of region * @direction: DMA direction * * This routine is supposed to sync the DMA region specified * by @dma_handle into the coherence domain. On SN, we're always cache * coherent, so we just need to free any ATEs associated with this mapping. */ void sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, int direction) { struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); provider->dma_unmap(pdev, dma_addr, direction); } EXPORT_SYMBOL(sn_dma_unmap_single); /** * sn_dma_unmap_sg - unmap a DMA scatterlist * @dev: device to unmap * @sg: scatterlist to unmap * @nhwentries: number of scatterlist entries * @direction: DMA direction * * Unmap a set of streaming mode DMA translations. */ void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, int direction) { int i; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); BUG_ON(dev->bus != &pci_bus_type); for (i = 0; i < nhwentries; i++, sg++) { provider->dma_unmap(pdev, sg->dma_address, direction); sg->dma_address = (dma_addr_t) NULL; sg->dma_length = 0; } } EXPORT_SYMBOL(sn_dma_unmap_sg); /** * sn_dma_map_sg - map a scatterlist for DMA * @dev: device to map for * @sg: scatterlist to map * @nhwentries: number of entries * @direction: direction of the DMA transaction * * Maps each entry of @sg for DMA. */ int sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nhwentries, int direction) { unsigned long phys_addr; struct scatterlist *saved_sg = sg; struct pci_dev *pdev = to_pci_dev(dev); struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); int i; BUG_ON(dev->bus != &pci_bus_type); /* * Setup a DMA address for each entry in the scatterlist. */ for (i = 0; i < nhwentries; i++, sg++) { phys_addr = SG_ENT_PHYS_ADDRESS(sg); sg->dma_address = provider->dma_map(pdev, phys_addr, sg->length); if (!sg->dma_address) { printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__); /* * Free any successfully allocated entries. */ if (i > 0) sn_dma_unmap_sg(dev, saved_sg, i, direction); return 0; } sg->dma_length = sg->length; } return nhwentries; } EXPORT_SYMBOL(sn_dma_map_sg); void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_single_for_cpu); void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_single_for_device); void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu); void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, int direction) { BUG_ON(dev->bus != &pci_bus_type); } EXPORT_SYMBOL(sn_dma_sync_sg_for_device); int sn_dma_mapping_error(dma_addr_t dma_addr) { return 0; } EXPORT_SYMBOL(sn_dma_mapping_error); char *sn_pci_get_legacy_mem(struct pci_bus *bus) { if (!SN_PCIBUS_BUSSOFT(bus)) return ERR_PTR(-ENODEV); return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET); } int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) { unsigned long addr; int ret; struct ia64_sal_retval isrv; /* * First, try the SN_SAL_IOIF_PCI_SAFE SAL call which can work * around hw issues at the pci bus level. SGI proms older than * 4.10 don't implment this. */ SAL_CALL(isrv, SN_SAL_IOIF_PCI_SAFE, pci_domain_nr(bus), bus->number, 0, /* io */ 0, /* read */ port, size, __pa(val)); if (isrv.status == 0) return size; /* * If the above failed, retry using the SAL_PROBE call which should * be present in all proms (but which cannot work round PCI chipset * bugs). This code is retained for compatability with old * pre-4.10 proms, and should be removed at some point in the future. */ if (!SN_PCIBUS_BUSSOFT(bus)) return -ENODEV; addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; addr += port; ret = ia64_sn_probe_mem(addr, (long)size, (void *)val); if (ret == 2) return -EINVAL; if (ret == 1) *val = -1; return size; } int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) { int ret = size; unsigned long paddr; unsigned long *addr; struct ia64_sal_retval isrv; /* * First, try the SN_SAL_IOIF_PCI_SAFE SAL call which can work * around hw issues at the pci bus level. SGI proms older than * 4.10 don't implment this. */ SAL_CALL(isrv, SN_SAL_IOIF_PCI_SAFE, pci_domain_nr(bus), bus->number, 0, /* io */ 1, /* write */ port, size, __pa(&val)); if (isrv.status == 0) return size; /* * If the above failed, retry using the SAL_PROBE call which should * be present in all proms (but which cannot work round PCI chipset * bugs). This code is retained for compatability with old * pre-4.10 proms, and should be removed at some point in the future. */ if (!SN_PCIBUS_BUSSOFT(bus)) { ret = -ENODEV; goto out; } /* Put the phys addr in uncached space */ paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; paddr += port; addr = (unsigned long *)paddr; switch (size) { case 1: *(volatile u8 *)(addr) = (u8)(val); break; case 2: *(volatile u16 *)(addr) = (u16)(val); break; case 4: *(volatile u32 *)(addr) = (u32)(val); break; default: ret = -EINVAL; break; } out: return ret; } |