Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | /* * Real Time Clock interface for PPC64. * * Based on rtc.c by Paul Gortmaker * * This driver allows use of the real time clock * from user space. It exports the /dev/rtc * interface supporting various ioctl() and also the * /proc/driver/rtc pseudo-file for status information. * * Interface does not support RTC interrupts nor an alarm. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * 1.0 Mike Corrigan: IBM iSeries rtc support * 1.1 Dave Engebretsen: IBM pSeries rtc support */ #define RTC_VERSION "1.1" #include <linux/config.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/miscdevice.h> #include <linux/ioport.h> #include <linux/fcntl.h> #include <linux/mc146818rtc.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/proc_fs.h> #include <linux/spinlock.h> #include <linux/bcd.h> #include <linux/interrupt.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/time.h> #include <asm/rtas.h> #include <asm/iSeries/LparData.h> #include <asm/iSeries/mf.h> #include <asm/machdep.h> #include <asm/iSeries/ItSpCommArea.h> extern int piranha_simulator; /* * We sponge a minor off of the misc major. No need slurping * up another valuable major dev number for this. If you add * an ioctl, make sure you don't conflict with SPARC's RTC * ioctls. */ static ssize_t rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos); static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg); static int rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data); /* * If this driver ever becomes modularised, it will be really nice * to make the epoch retain its value across module reload... */ static unsigned long epoch = 1900; /* year corresponding to 0x00 */ static const unsigned char days_in_mo[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; /* * Now all the various file operations that we export. */ static ssize_t rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { return -EIO; } static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct rtc_time wtime; switch (cmd) { case RTC_RD_TIME: /* Read the time/date from RTC */ { memset(&wtime, 0, sizeof(struct rtc_time)); ppc_md.get_rtc_time(&wtime); break; } case RTC_SET_TIME: /* Set the RTC */ { struct rtc_time rtc_tm; unsigned char mon, day, hrs, min, sec, leap_yr; unsigned int yrs; if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, sizeof(struct rtc_time))) return -EFAULT; yrs = rtc_tm.tm_year; mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ day = rtc_tm.tm_mday; hrs = rtc_tm.tm_hour; min = rtc_tm.tm_min; sec = rtc_tm.tm_sec; if (yrs < 70) return -EINVAL; leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); if ((mon > 12) || (day == 0)) return -EINVAL; if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) return -EINVAL; if ((hrs >= 24) || (min >= 60) || (sec >= 60)) return -EINVAL; if ( yrs > 169 ) return -EINVAL; ppc_md.set_rtc_time(&rtc_tm); return 0; } case RTC_EPOCH_READ: /* Read the epoch. */ { return put_user (epoch, (unsigned long __user *)arg); } case RTC_EPOCH_SET: /* Set the epoch. */ { /* * There were no RTC clocks before 1900. */ if (arg < 1900) return -EINVAL; if (!capable(CAP_SYS_TIME)) return -EACCES; epoch = arg; return 0; } default: return -EINVAL; } return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; } static int rtc_open(struct inode *inode, struct file *file) { nonseekable_open(inode, file); return 0; } static int rtc_release(struct inode *inode, struct file *file) { return 0; } /* * The various file operations we support. */ static struct file_operations rtc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = rtc_read, .ioctl = rtc_ioctl, .open = rtc_open, .release = rtc_release, }; static struct miscdevice rtc_dev = { .minor = RTC_MINOR, .name = "rtc", .fops = &rtc_fops }; static int __init rtc_init(void) { int retval; retval = misc_register(&rtc_dev); if(retval < 0) return retval; #ifdef CONFIG_PROC_FS if (create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, NULL) == NULL) { misc_deregister(&rtc_dev); return -ENOMEM; } #endif printk(KERN_INFO "i/pSeries Real Time Clock Driver v" RTC_VERSION "\n"); return 0; } static void __exit rtc_exit (void) { remove_proc_entry ("driver/rtc", NULL); misc_deregister(&rtc_dev); } module_init(rtc_init); module_exit(rtc_exit); /* * Info exported via "/proc/driver/rtc". */ static int rtc_proc_output (char *buf) { char *p; struct rtc_time tm; p = buf; ppc_md.get_rtc_time(&tm); /* * There is no way to tell if the luser has the RTC set for local * time or for Universal Standard Time (GMT). Probably local though. */ p += sprintf(p, "rtc_time\t: %02d:%02d:%02d\n" "rtc_date\t: %04d-%02d-%02d\n" "rtc_epoch\t: %04lu\n", tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); p += sprintf(p, "DST_enable\t: no\n" "BCD\t\t: yes\n" "24hr\t\t: yes\n" ); return p - buf; } static int rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = rtc_proc_output (page); if (len <= off+count) *eof = 1; *start = page + off; len -= off; if (len>count) len = count; if (len<0) len = 0; return len; } #ifdef CONFIG_PPC_ISERIES /* * Get the RTC from the virtual service processor * This requires flowing LpEvents to the primary partition */ void iSeries_get_rtc_time(struct rtc_time *rtc_tm) { if (piranha_simulator) return; mf_get_rtc(rtc_tm); rtc_tm->tm_mon--; } /* * Set the RTC in the virtual service processor * This requires flowing LpEvents to the primary partition */ int iSeries_set_rtc_time(struct rtc_time *tm) { mf_set_rtc(tm); return 0; } void iSeries_get_boot_time(struct rtc_time *tm) { if ( piranha_simulator ) return; mf_get_boot_rtc(tm); tm->tm_mon -= 1; } #endif #ifdef CONFIG_PPC_RTAS #define MAX_RTC_WAIT 5000 /* 5 sec */ #define RTAS_CLOCK_BUSY (-2) void pSeries_get_boot_time(struct rtc_time *rtc_tm) { int ret[8]; int error, wait_time; unsigned long max_wait_tb; max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; do { error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { wait_time = rtas_extended_busy_delay_time(error); /* This is boot time so we spin. */ udelay(wait_time*1000); error = RTAS_CLOCK_BUSY; } } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); if (error != 0 && printk_ratelimit()) { printk(KERN_WARNING "error: reading the clock failed (%d)\n", error); return; } rtc_tm->tm_sec = ret[5]; rtc_tm->tm_min = ret[4]; rtc_tm->tm_hour = ret[3]; rtc_tm->tm_mday = ret[2]; rtc_tm->tm_mon = ret[1] - 1; rtc_tm->tm_year = ret[0] - 1900; } /* NOTE: get_rtc_time will get an error if executed in interrupt context * and if a delay is needed to read the clock. In this case we just * silently return without updating rtc_tm. */ void pSeries_get_rtc_time(struct rtc_time *rtc_tm) { int ret[8]; int error, wait_time; unsigned long max_wait_tb; max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; do { error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { if (in_interrupt() && printk_ratelimit()) { printk(KERN_WARNING "error: reading clock would delay interrupt\n"); return; /* delay not allowed */ } wait_time = rtas_extended_busy_delay_time(error); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(wait_time); error = RTAS_CLOCK_BUSY; } } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); if (error != 0 && printk_ratelimit()) { printk(KERN_WARNING "error: reading the clock failed (%d)\n", error); return; } rtc_tm->tm_sec = ret[5]; rtc_tm->tm_min = ret[4]; rtc_tm->tm_hour = ret[3]; rtc_tm->tm_mday = ret[2]; rtc_tm->tm_mon = ret[1] - 1; rtc_tm->tm_year = ret[0] - 1900; } int pSeries_set_rtc_time(struct rtc_time *tm) { int error, wait_time; unsigned long max_wait_tb; max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; do { error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, 0); if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { if (in_interrupt()) return 1; /* probably decrementer */ wait_time = rtas_extended_busy_delay_time(error); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(wait_time); error = RTAS_CLOCK_BUSY; } } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); if (error != 0 && printk_ratelimit()) printk(KERN_WARNING "error: setting the clock failed (%d)\n", error); return 0; } #endif |