Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 | /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $ * pci_sabre.c: Sabre specific PCI controller support. * * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu) * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com) */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <asm/apb.h> #include <asm/pbm.h> #include <asm/iommu.h> #include <asm/irq.h> #include <asm/smp.h> #include <asm/oplib.h> #include "pci_impl.h" #include "iommu_common.h" /* All SABRE registers are 64-bits. The following accessor * routines are how they are accessed. The REG parameter * is a physical address. */ #define sabre_read(__reg) \ ({ u64 __ret; \ __asm__ __volatile__("ldxa [%1] %2, %0" \ : "=r" (__ret) \ : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory"); \ __ret; \ }) #define sabre_write(__reg, __val) \ __asm__ __volatile__("stxa %0, [%1] %2" \ : /* no outputs */ \ : "r" (__val), "r" (__reg), \ "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory") /* SABRE PCI controller register offsets and definitions. */ #define SABRE_UE_AFSR 0x0030UL #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */ #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */ #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */ #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */ #define SABRE_UECE_AFAR 0x0038UL #define SABRE_CE_AFSR 0x0040UL #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */ #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */ #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */ #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */ #define SABRE_IOMMU_CONTROL 0x0200UL #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */ #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */ #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */ #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */ #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */ #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */ #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */ #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */ #define SABRE_IOMMU_TSBBASE 0x0208UL #define SABRE_IOMMU_FLUSH 0x0210UL #define SABRE_IMAP_A_SLOT0 0x0c00UL #define SABRE_IMAP_B_SLOT0 0x0c20UL #define SABRE_IMAP_SCSI 0x1000UL #define SABRE_IMAP_ETH 0x1008UL #define SABRE_IMAP_BPP 0x1010UL #define SABRE_IMAP_AU_REC 0x1018UL #define SABRE_IMAP_AU_PLAY 0x1020UL #define SABRE_IMAP_PFAIL 0x1028UL #define SABRE_IMAP_KMS 0x1030UL #define SABRE_IMAP_FLPY 0x1038UL #define SABRE_IMAP_SHW 0x1040UL #define SABRE_IMAP_KBD 0x1048UL #define SABRE_IMAP_MS 0x1050UL #define SABRE_IMAP_SER 0x1058UL #define SABRE_IMAP_UE 0x1070UL #define SABRE_IMAP_CE 0x1078UL #define SABRE_IMAP_PCIERR 0x1080UL #define SABRE_IMAP_GFX 0x1098UL #define SABRE_IMAP_EUPA 0x10a0UL #define SABRE_ICLR_A_SLOT0 0x1400UL #define SABRE_ICLR_B_SLOT0 0x1480UL #define SABRE_ICLR_SCSI 0x1800UL #define SABRE_ICLR_ETH 0x1808UL #define SABRE_ICLR_BPP 0x1810UL #define SABRE_ICLR_AU_REC 0x1818UL #define SABRE_ICLR_AU_PLAY 0x1820UL #define SABRE_ICLR_PFAIL 0x1828UL #define SABRE_ICLR_KMS 0x1830UL #define SABRE_ICLR_FLPY 0x1838UL #define SABRE_ICLR_SHW 0x1840UL #define SABRE_ICLR_KBD 0x1848UL #define SABRE_ICLR_MS 0x1850UL #define SABRE_ICLR_SER 0x1858UL #define SABRE_ICLR_UE 0x1870UL #define SABRE_ICLR_CE 0x1878UL #define SABRE_ICLR_PCIERR 0x1880UL #define SABRE_WRSYNC 0x1c20UL #define SABRE_PCICTRL 0x2000UL #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */ #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */ #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */ #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */ #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */ #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */ #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */ #define SABRE_PIOAFSR 0x2010UL #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */ #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */ #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */ #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */ #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */ #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */ #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */ #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */ #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */ #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */ #define SABRE_PIOAFAR 0x2018UL #define SABRE_PCIDIAG 0x2020UL #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */ #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */ #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */ #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */ #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */ #define SABRE_PCITASR 0x2028UL #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */ #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */ #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */ #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */ #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */ #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */ #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */ #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */ #define SABRE_PIOBUF_DIAG 0x5000UL #define SABRE_DMABUF_DIAGLO 0x5100UL #define SABRE_DMABUF_DIAGHI 0x51c0UL #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */ #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */ #define SABRE_IOMMU_VADIAG 0xa400UL #define SABRE_IOMMU_TCDIAG 0xa408UL #define SABRE_IOMMU_TAG 0xa580UL #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */ #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */ #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */ #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */ #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */ #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */ #define SABRE_IOMMU_DATA 0xa600UL #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */ #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */ #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */ #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */ #define SABRE_PCI_IRQSTATE 0xa800UL #define SABRE_OBIO_IRQSTATE 0xa808UL #define SABRE_FFBCFG 0xf000UL #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */ #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */ #define SABRE_MCCTRL0 0xf010UL #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */ #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */ #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */ #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */ #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */ #define SABRE_MCCTRL1 0xf018UL #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */ #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */ #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */ #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */ #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */ #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */ #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */ #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */ #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */ #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */ #define SABRE_RESETCTRL 0xf020UL #define SABRE_CONFIGSPACE 0x001000000UL #define SABRE_IOSPACE 0x002000000UL #define SABRE_IOSPACE_SIZE 0x000ffffffUL #define SABRE_MEMSPACE 0x100000000UL #define SABRE_MEMSPACE_SIZE 0x07fffffffUL /* UltraSparc-IIi Programmer's Manual, page 325, PCI * configuration space address format: * * 32 24 23 16 15 11 10 8 7 2 1 0 * --------------------------------------------------------- * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 | * --------------------------------------------------------- */ #define SABRE_CONFIG_BASE(PBM) \ ((PBM)->config_space | (1UL << 24)) #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ (((unsigned long)(BUS) << 16) | \ ((unsigned long)(DEVFN) << 8) | \ ((unsigned long)(REG))) static int hummingbird_p; static struct pci_bus *sabre_root_bus; static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm, unsigned char bus, unsigned int devfn, int where) { if (!pbm) return NULL; return (void *) (SABRE_CONFIG_BASE(pbm) | SABRE_CONFIG_ENCODE(bus, devfn, where)); } static int sabre_out_of_range(unsigned char devfn) { if (hummingbird_p) return 0; return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) || ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) || (PCI_SLOT(devfn) > 1)); } static int __sabre_out_of_range(struct pci_pbm_info *pbm, unsigned char bus, unsigned char devfn) { if (hummingbird_p) return 0; return ((pbm->parent == 0) || ((pbm == &pbm->parent->pbm_B) && (bus == pbm->pci_first_busno) && PCI_SLOT(devfn) > 8) || ((pbm == &pbm->parent->pbm_A) && (bus == pbm->pci_first_busno) && PCI_SLOT(devfn) > 8)); } static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 *value) { struct pci_pbm_info *pbm = bus_dev->sysdata; unsigned char bus = bus_dev->number; u32 *addr; u16 tmp16; u8 tmp8; switch (size) { case 1: *value = 0xff; break; case 2: *value = 0xffff; break; case 4: *value = 0xffffffff; break; } addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: pci_config_read8((u8 *) addr, &tmp8); *value = tmp8; break; case 2: if (where & 0x01) { printk("pci_read_config_word: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_read16((u16 *) addr, &tmp16); *value = tmp16; break; case 4: if (where & 0x03) { printk("pci_read_config_dword: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_read32(addr, value); break; } return PCIBIOS_SUCCESSFUL; } static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { if (!bus->number && sabre_out_of_range(devfn)) { switch (size) { case 1: *value = 0xff; break; case 2: *value = 0xffff; break; case 4: *value = 0xffffffff; break; } return PCIBIOS_SUCCESSFUL; } if (bus->number || PCI_SLOT(devfn)) return __sabre_read_pci_cfg(bus, devfn, where, size, value); /* When accessing PCI config space of the PCI controller itself (bus * 0, device slot 0, function 0) there are restrictions. Each * register must be accessed as it's natural size. Thus, for example * the Vendor ID must be accessed as a 16-bit quantity. */ switch (size) { case 1: if (where < 8) { u32 tmp32; u16 tmp16; __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); tmp16 = (u16) tmp32; if (where & 1) *value = tmp16 >> 8; else *value = tmp16 & 0xff; } else return __sabre_read_pci_cfg(bus, devfn, where, 1, value); break; case 2: if (where < 8) return __sabre_read_pci_cfg(bus, devfn, where, 2, value); else { u32 tmp32; u8 tmp8; __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32); tmp8 = (u8) tmp32; *value = tmp8; __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32); tmp8 = (u8) tmp32; *value |= tmp8 << 8; } break; case 4: { u32 tmp32; u16 tmp16; sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32); tmp16 = (u16) tmp32; *value = tmp16; sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32); tmp16 = (u16) tmp32; *value |= tmp16 << 16; break; } } return PCIBIOS_SUCCESSFUL; } static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, int where, int size, u32 value) { struct pci_pbm_info *pbm = bus_dev->sysdata; unsigned char bus = bus_dev->number; u32 *addr; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: pci_config_write8((u8 *) addr, value); break; case 2: if (where & 0x01) { printk("pci_write_config_word: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_write16((u16 *) addr, value); break; case 4: if (where & 0x03) { printk("pci_write_config_dword: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_write32(addr, value); break; } return PCIBIOS_SUCCESSFUL; } static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { if (bus->number) return __sabre_write_pci_cfg(bus, devfn, where, size, value); if (sabre_out_of_range(devfn)) return PCIBIOS_SUCCESSFUL; switch (size) { case 1: if (where < 8) { u32 tmp32; u16 tmp16; __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); tmp16 = (u16) tmp32; if (where & 1) { value &= 0x00ff; value |= tmp16 << 8; } else { value &= 0xff00; value |= tmp16; } tmp32 = (u32) tmp16; return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32); } else return __sabre_write_pci_cfg(bus, devfn, where, 1, value); break; case 2: if (where < 8) return __sabre_write_pci_cfg(bus, devfn, where, 2, value); else { __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff); __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8); } break; case 4: sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff); sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16); break; } return PCIBIOS_SUCCESSFUL; } static struct pci_ops sabre_ops = { .read = sabre_read_pci_cfg, .write = sabre_write_pci_cfg, }; static unsigned long sabre_pcislot_imap_offset(unsigned long ino) { unsigned int bus = (ino & 0x10) >> 4; unsigned int slot = (ino & 0x0c) >> 2; if (bus == 0) return SABRE_IMAP_A_SLOT0 + (slot * 8); else return SABRE_IMAP_B_SLOT0 + (slot * 8); } static unsigned long __onboard_imap_off[] = { /*0x20*/ SABRE_IMAP_SCSI, /*0x21*/ SABRE_IMAP_ETH, /*0x22*/ SABRE_IMAP_BPP, /*0x23*/ SABRE_IMAP_AU_REC, /*0x24*/ SABRE_IMAP_AU_PLAY, /*0x25*/ SABRE_IMAP_PFAIL, /*0x26*/ SABRE_IMAP_KMS, /*0x27*/ SABRE_IMAP_FLPY, /*0x28*/ SABRE_IMAP_SHW, /*0x29*/ SABRE_IMAP_KBD, /*0x2a*/ SABRE_IMAP_MS, /*0x2b*/ SABRE_IMAP_SER, /*0x2c*/ 0 /* reserved */, /*0x2d*/ 0 /* reserved */, /*0x2e*/ SABRE_IMAP_UE, /*0x2f*/ SABRE_IMAP_CE, /*0x30*/ SABRE_IMAP_PCIERR, }; #define SABRE_ONBOARD_IRQ_BASE 0x20 #define SABRE_ONBOARD_IRQ_LAST 0x30 #define sabre_onboard_imap_offset(__ino) \ __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE] #define sabre_iclr_offset(ino) \ ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) /* PCI SABRE INO number to Sparc PIL level. */ static unsigned char sabre_pil_table[] = { /*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */ /*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */ /*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */ /*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */ /*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */ /*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */ /*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */ /*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */ /*0x20*/4, /* SCSI */ /*0x21*/5, /* Ethernet */ /*0x22*/8, /* Parallel Port */ /*0x23*/13, /* Audio Record */ /*0x24*/14, /* Audio Playback */ /*0x25*/15, /* PowerFail */ /*0x26*/4, /* second SCSI */ /*0x27*/11, /* Floppy */ /*0x28*/4, /* Spare Hardware */ /*0x29*/9, /* Keyboard */ /*0x2a*/4, /* Mouse */ /*0x2b*/12, /* Serial */ /*0x2c*/10, /* Timer 0 */ /*0x2d*/11, /* Timer 1 */ /*0x2e*/15, /* Uncorrectable ECC */ /*0x2f*/15, /* Correctable ECC */ /*0x30*/15, /* PCI Bus A Error */ /*0x31*/15, /* PCI Bus B Error */ /*0x32*/15, /* Power Management */ }; static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino) { int ret; if (pdev && pdev->vendor == PCI_VENDOR_ID_SUN && pdev->device == PCI_DEVICE_ID_SUN_RIO_USB) return 9; ret = sabre_pil_table[ino]; if (ret == 0 && pdev == NULL) { ret = 4; } else if (ret == 0) { switch ((pdev->class >> 16) & 0xff) { case PCI_BASE_CLASS_STORAGE: ret = 4; break; case PCI_BASE_CLASS_NETWORK: ret = 6; break; case PCI_BASE_CLASS_DISPLAY: ret = 9; break; case PCI_BASE_CLASS_MULTIMEDIA: case PCI_BASE_CLASS_MEMORY: case PCI_BASE_CLASS_BRIDGE: case PCI_BASE_CLASS_SERIAL: ret = 10; break; default: ret = 4; break; }; } return ret; } static unsigned int __init sabre_irq_build(struct pci_pbm_info *pbm, struct pci_dev *pdev, unsigned int ino) { struct ino_bucket *bucket; unsigned long imap, iclr; unsigned long imap_off, iclr_off; int pil, inofixup = 0; ino &= PCI_IRQ_INO; if (ino < SABRE_ONBOARD_IRQ_BASE) { /* PCI slot */ imap_off = sabre_pcislot_imap_offset(ino); } else { /* onboard device */ if (ino > SABRE_ONBOARD_IRQ_LAST) { prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino); prom_halt(); } imap_off = sabre_onboard_imap_offset(ino); } /* Now build the IRQ bucket. */ pil = sabre_ino_to_pil(pdev, ino); if (PIL_RESERVED(pil)) BUG(); imap = pbm->controller_regs + imap_off; imap += 4; iclr_off = sabre_iclr_offset(ino); iclr = pbm->controller_regs + iclr_off; iclr += 4; if ((ino & 0x20) == 0) inofixup = ino & 0x03; bucket = __bucket(build_irq(pil, inofixup, iclr, imap)); bucket->flags |= IBF_PCI; if (pdev) { struct pcidev_cookie *pcp = pdev->sysdata; /* When a device lives behind a bridge deeper in the * PCI bus topology than APB, a special sequence must * run to make sure all pending DMA transfers at the * time of IRQ delivery are visible in the coherency * domain by the cpu. This sequence is to perform * a read on the far side of the non-APB bridge, then * perform a read of Sabre's DMA write-sync register. * * Currently, the PCI_CONFIG register for the device * is used for this read from the far side of the bridge. */ if (pdev->bus->number != pcp->pbm->pci_first_busno) { bucket->flags |= IBF_DMA_SYNC; bucket->synctab_ent = dma_sync_reg_table_entry++; dma_sync_reg_table[bucket->synctab_ent] = (unsigned long) sabre_pci_config_mkaddr( pcp->pbm, pdev->bus->number, pdev->devfn, PCI_COMMAND); } } return __irq(bucket); } /* SABRE error handling support. */ static void sabre_check_iommu_error(struct pci_controller_info *p, unsigned long afsr, unsigned long afar) { struct pci_iommu *iommu = p->pbm_A.iommu; unsigned long iommu_tag[16]; unsigned long iommu_data[16]; unsigned long flags; u64 control; int i; spin_lock_irqsave(&iommu->lock, flags); control = sabre_read(iommu->iommu_control); if (control & SABRE_IOMMUCTRL_ERR) { char *type_string; /* Clear the error encountered bit. * NOTE: On Sabre this is write 1 to clear, * which is different from Psycho. */ sabre_write(iommu->iommu_control, control); switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { case 1: type_string = "Invalid Error"; break; case 3: type_string = "ECC Error"; break; default: type_string = "Unknown"; break; }; printk("SABRE%d: IOMMU Error, type[%s]\n", p->index, type_string); /* Enter diagnostic mode and probe for error'd * entries in the IOTLB. */ control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); sabre_write(iommu->iommu_control, (control | SABRE_IOMMUCTRL_DENAB)); for (i = 0; i < 16; i++) { unsigned long base = p->pbm_A.controller_regs; iommu_tag[i] = sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); iommu_data[i] = sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); } sabre_write(iommu->iommu_control, control); for (i = 0; i < 16; i++) { unsigned long tag, data; tag = iommu_tag[i]; if (!(tag & SABRE_IOMMUTAG_ERR)) continue; data = iommu_data[i]; switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { case 1: type_string = "Invalid Error"; break; case 3: type_string = "ECC Error"; break; default: type_string = "Unknown"; break; }; printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", p->index, i, tag, type_string, ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT)); printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", p->index, i, data, ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT)); } } spin_unlock_irqrestore(&iommu->lock, flags); } static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs) { struct pci_controller_info *p = dev_id; unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR; unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; unsigned long afsr, afar, error_bits; int reported; /* Latch uncorrectable error status. */ afar = sabre_read(afar_reg); afsr = sabre_read(afsr_reg); /* Clear the primary/secondary error status bits. */ error_bits = afsr & (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); if (!error_bits) return IRQ_NONE; sabre_write(afsr_reg, error_bits); /* Log the error. */ printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n", p->index, ((error_bits & SABRE_UEAFSR_PDRD) ? "DMA Read" : ((error_bits & SABRE_UEAFSR_PDWR) ? "DMA Write" : "???")), ((error_bits & SABRE_UEAFSR_PDTE) ? ":Translation Error" : "")); printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", p->index, (afsr & SABRE_UEAFSR_BMSK) >> 32UL, (afsr & SABRE_UEAFSR_OFF) >> 29UL, ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar); printk("SABRE%d: UE Secondary errors [", p->index); reported = 0; if (afsr & SABRE_UEAFSR_SDRD) { reported++; printk("(DMA Read)"); } if (afsr & SABRE_UEAFSR_SDWR) { reported++; printk("(DMA Write)"); } if (afsr & SABRE_UEAFSR_SDTE) { reported++; printk("(Translation Error)"); } if (!reported) printk("(none)"); printk("]\n"); /* Interrogate IOMMU for error status. */ sabre_check_iommu_error(p, afsr, afar); return IRQ_HANDLED; } static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs) { struct pci_controller_info *p = dev_id; unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR; unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; unsigned long afsr, afar, error_bits; int reported; /* Latch error status. */ afar = sabre_read(afar_reg); afsr = sabre_read(afsr_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); if (!error_bits) return IRQ_NONE; sabre_write(afsr_reg, error_bits); /* Log the error. */ printk("SABRE%d: Correctable Error, primary error type[%s]\n", p->index, ((error_bits & SABRE_CEAFSR_PDRD) ? "DMA Read" : ((error_bits & SABRE_CEAFSR_PDWR) ? "DMA Write" : "???"))); /* XXX Use syndrome and afar to print out module string just like * XXX UDB CE trap handler does... -DaveM */ printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " "was_block(%d)\n", p->index, (afsr & SABRE_CEAFSR_ESYND) >> 48UL, (afsr & SABRE_CEAFSR_BMSK) >> 32UL, (afsr & SABRE_CEAFSR_OFF) >> 29UL, ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar); printk("SABRE%d: CE Secondary errors [", p->index); reported = 0; if (afsr & SABRE_CEAFSR_SDRD) { reported++; printk("(DMA Read)"); } if (afsr & SABRE_CEAFSR_SDWR) { reported++; printk("(DMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); return IRQ_HANDLED; } static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p) { unsigned long csr_reg, csr, csr_error_bits; irqreturn_t ret = IRQ_NONE; u16 stat; csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL; csr = sabre_read(csr_reg); csr_error_bits = csr & SABRE_PCICTRL_SERR; if (csr_error_bits) { /* Clear the errors. */ sabre_write(csr_reg, csr); /* Log 'em. */ if (csr_error_bits & SABRE_PCICTRL_SERR) printk("SABRE%d: PCI SERR signal asserted.\n", p->index); ret = IRQ_HANDLED; } pci_read_config_word(sabre_root_bus->self, PCI_STATUS, &stat); if (stat & (PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_SIG_SYSTEM_ERROR)) { printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n", p->index, stat); pci_write_config_word(sabre_root_bus->self, PCI_STATUS, 0xffff); ret = IRQ_HANDLED; } return ret; } static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs) { struct pci_controller_info *p = dev_id; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR; afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR; /* Latch error status. */ afar = sabre_read(afar_reg); afsr = sabre_read(afsr_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); if (!error_bits) return sabre_pcierr_intr_other(p); sabre_write(afsr_reg, error_bits); /* Log the error. */ printk("SABRE%d: PCI Error, primary error type[%s]\n", p->index, (((error_bits & SABRE_PIOAFSR_PMA) ? "Master Abort" : ((error_bits & SABRE_PIOAFSR_PTA) ? "Target Abort" : ((error_bits & SABRE_PIOAFSR_PRTRY) ? "Excessive Retries" : ((error_bits & SABRE_PIOAFSR_PPERR) ? "Parity Error" : "???")))))); printk("SABRE%d: bytemask[%04lx] was_block(%d)\n", p->index, (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar); printk("SABRE%d: PCI Secondary errors [", p->index); reported = 0; if (afsr & SABRE_PIOAFSR_SMA) { reported++; printk("(Master Abort)"); } if (afsr & SABRE_PIOAFSR_STA) { reported++; printk("(Target Abort)"); } if (afsr & SABRE_PIOAFSR_SRTRY) { reported++; printk("(Excessive Retries)"); } if (afsr & SABRE_PIOAFSR_SPERR) { reported++; printk("(Parity Error)"); } if (!reported) printk("(none)"); printk("]\n"); /* For the error types shown, scan both PCI buses for devices * which have logged that error type. */ /* If we see a Target Abort, this could be the result of an * IOMMU translation error of some sort. It is extremely * useful to log this information as usually it indicates * a bug in the IOMMU support code or a PCI device driver. */ if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { sabre_check_iommu_error(p, afsr, afar); pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus); pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus); } if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) { pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus); pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus); } /* For excessive retries, SABRE/PBM will abort the device * and there is no way to specifically check for excessive * retries in the config space status registers. So what * we hope is that we'll catch it via the master/target * abort events. */ if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) { pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus); pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus); } return IRQ_HANDLED; } /* XXX What about PowerFail/PowerManagement??? -DaveM */ #define SABRE_UE_INO 0x2e #define SABRE_CE_INO 0x2f #define SABRE_PCIERR_INO 0x30 static void __init sabre_register_error_handlers(struct pci_controller_info *p) { struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */ unsigned long base = pbm->controller_regs; unsigned long irq, portid = pbm->portid; u64 tmp; /* We clear the error bits in the appropriate AFSR before * registering the handler so that we don't get spurious * interrupts. */ sabre_write(base + SABRE_UE_AFSR, (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO); if (request_irq(irq, sabre_ue_intr, SA_SHIRQ, "SABRE UE", p) < 0) { prom_printf("SABRE%d: Cannot register UE interrupt.\n", p->index); prom_halt(); } sabre_write(base + SABRE_CE_AFSR, (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO); if (request_irq(irq, sabre_ce_intr, SA_SHIRQ, "SABRE CE", p) < 0) { prom_printf("SABRE%d: Cannot register CE interrupt.\n", p->index); prom_halt(); } irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO); if (request_irq(irq, sabre_pcierr_intr, SA_SHIRQ, "SABRE PCIERR", p) < 0) { prom_printf("SABRE%d: Cannot register PciERR interrupt.\n", p->index); prom_halt(); } tmp = sabre_read(base + SABRE_PCICTRL); tmp |= SABRE_PCICTRL_ERREN; sabre_write(base + SABRE_PCICTRL, tmp); } static void __init sabre_resource_adjust(struct pci_dev *pdev, struct resource *res, struct resource *root) { struct pci_pbm_info *pbm = pdev->bus->sysdata; unsigned long base; if (res->flags & IORESOURCE_IO) base = pbm->controller_regs + SABRE_IOSPACE; else base = pbm->controller_regs + SABRE_MEMSPACE; res->start += base; res->end += base; } static void __init sabre_base_address_update(struct pci_dev *pdev, int resource) { struct pcidev_cookie *pcp = pdev->sysdata; struct pci_pbm_info *pbm = pcp->pbm; struct resource *res; unsigned long base; u32 reg; int where, size, is_64bit; res = &pdev->resource[resource]; if (resource < 6) { where = PCI_BASE_ADDRESS_0 + (resource * 4); } else if (resource == PCI_ROM_RESOURCE) { where = pdev->rom_base_reg; } else { /* Somebody might have asked allocation of a non-standard resource */ return; } is_64bit = 0; if (res->flags & IORESOURCE_IO) base = pbm->controller_regs + SABRE_IOSPACE; else { base = pbm->controller_regs + SABRE_MEMSPACE; if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) == PCI_BASE_ADDRESS_MEM_TYPE_64) is_64bit = 1; } size = res->end - res->start; pci_read_config_dword(pdev, where, ®); reg = ((reg & size) | (((u32)(res->start - base)) & ~size)); if (resource == PCI_ROM_RESOURCE) { reg |= PCI_ROM_ADDRESS_ENABLE; res->flags |= PCI_ROM_ADDRESS_ENABLE; } pci_write_config_dword(pdev, where, reg); /* This knows that the upper 32-bits of the address * must be zero. Our PCI common layer enforces this. */ if (is_64bit) pci_write_config_dword(pdev, where + 4, 0); } static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus) { struct pci_dev *pdev; list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { if (pdev->vendor == PCI_VENDOR_ID_SUN && pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { u32 word32; u16 word16; sabre_read_pci_cfg(pdev->bus, pdev->devfn, PCI_COMMAND, 2, &word32); word16 = (u16) word32; word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; word32 = (u32) word16; sabre_write_pci_cfg(pdev->bus, pdev->devfn, PCI_COMMAND, 2, word32); /* Status register bits are "write 1 to clear". */ sabre_write_pci_cfg(pdev->bus, pdev->devfn, PCI_STATUS, 2, 0xffff); sabre_write_pci_cfg(pdev->bus, pdev->devfn, PCI_SEC_STATUS, 2, 0xffff); /* Use a primary/seconday latency timer value * of 64. */ sabre_write_pci_cfg(pdev->bus, pdev->devfn, PCI_LATENCY_TIMER, 1, 64); sabre_write_pci_cfg(pdev->bus, pdev->devfn, PCI_SEC_LATENCY_TIMER, 1, 64); /* Enable reporting/forwarding of master aborts, * parity, and SERR. */ sabre_write_pci_cfg(pdev->bus, pdev->devfn, PCI_BRIDGE_CONTROL, 1, (PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_MASTER_ABORT)); } } } static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm) { struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL); if (!cookie) { prom_printf("SABRE: Critical allocation failure.\n"); prom_halt(); } /* All we care about is the PBM. */ memset(cookie, 0, sizeof(*cookie)); cookie->pbm = pbm; return cookie; } static void __init sabre_scan_bus(struct pci_controller_info *p) { static int once; struct pci_bus *sabre_bus, *pbus; struct pci_pbm_info *pbm; struct pcidev_cookie *cookie; int sabres_scanned; /* The APB bridge speaks to the Sabre host PCI bridge * at 66Mhz, but the front side of APB runs at 33Mhz * for both segments. */ p->pbm_A.is_66mhz_capable = 0; p->pbm_B.is_66mhz_capable = 0; /* This driver has not been verified to handle * multiple SABREs yet, so trap this. * * Also note that the SABRE host bridge is hardwired * to live at bus 0. */ if (once != 0) { prom_printf("SABRE: Multiple controllers unsupported.\n"); prom_halt(); } once++; cookie = alloc_bridge_cookie(&p->pbm_A); sabre_bus = pci_scan_bus(p->pci_first_busno, p->pci_ops, &p->pbm_A); pci_fixup_host_bridge_self(sabre_bus); sabre_bus->self->sysdata = cookie; sabre_root_bus = sabre_bus; apb_init(p, sabre_bus); sabres_scanned = 0; list_for_each_entry(pbus, &sabre_bus->children, node) { if (pbus->number == p->pbm_A.pci_first_busno) { pbm = &p->pbm_A; } else if (pbus->number == p->pbm_B.pci_first_busno) { pbm = &p->pbm_B; } else continue; cookie = alloc_bridge_cookie(pbm); pbus->self->sysdata = cookie; sabres_scanned++; pbus->sysdata = pbm; pbm->pci_bus = pbus; pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node); pci_record_assignments(pbm, pbus); pci_assign_unassigned(pbm, pbus); pci_fixup_irq(pbm, pbus); pci_determine_66mhz_disposition(pbm, pbus); pci_setup_busmastering(pbm, pbus); } if (!sabres_scanned) { /* Hummingbird, no APBs. */ pbm = &p->pbm_A; sabre_bus->sysdata = pbm; pbm->pci_bus = sabre_bus; pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node); pci_record_assignments(pbm, sabre_bus); pci_assign_unassigned(pbm, sabre_bus); pci_fixup_irq(pbm, sabre_bus); pci_determine_66mhz_disposition(pbm, sabre_bus); pci_setup_busmastering(pbm, sabre_bus); } sabre_register_error_handlers(p); } static void __init sabre_iommu_init(struct pci_controller_info *p, int tsbsize, unsigned long dvma_offset, u32 dma_mask) { struct pci_iommu *iommu = p->pbm_A.iommu; unsigned long tsbbase, i, order; u64 control; /* Setup initial software IOMMU state. */ spin_lock_init(&iommu->lock); iommu->iommu_cur_ctx = 0; /* Register addresses. */ iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL; iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE; iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH; iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC; /* Sabre's IOMMU lacks ctx flushing. */ iommu->iommu_ctxflush = 0; /* Invalidate TLB Entries. */ control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); control |= SABRE_IOMMUCTRL_DENAB; sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); for(i = 0; i < 16; i++) { sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); } /* Leave diag mode enabled for full-flushing done * in pci_iommu.c */ iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0); if (!iommu->dummy_page) { prom_printf("PSYCHO_IOMMU: Error, gfp(dummy_page) failed.\n"); prom_halt(); } memset((void *)iommu->dummy_page, 0, PAGE_SIZE); iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page); tsbbase = __get_free_pages(GFP_KERNEL, order = get_order(tsbsize * 1024 * 8)); if (!tsbbase) { prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n"); prom_halt(); } iommu->page_table = (iopte_t *)tsbbase; iommu->page_table_map_base = dvma_offset; iommu->dma_addr_mask = dma_mask; pci_iommu_table_init(iommu, PAGE_SIZE << order); sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase)); control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); control |= SABRE_IOMMUCTRL_ENAB; switch(tsbsize) { case 64: control |= SABRE_IOMMU_TSBSZ_64K; iommu->page_table_sz_bits = 16; break; case 128: control |= SABRE_IOMMU_TSBSZ_128K; iommu->page_table_sz_bits = 17; break; default: prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); prom_halt(); break; } sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); /* We start with no consistent mappings. */ iommu->lowest_consistent_map = 1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS); for (i = 0; i < PBM_NCLUSTERS; i++) { iommu->alloc_info[i].flush = 0; iommu->alloc_info[i].next = 0; } } static void __init pbm_register_toplevel_resources(struct pci_controller_info *p, struct pci_pbm_info *pbm) { char *name = pbm->name; unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE; unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE; unsigned int devfn; unsigned long first, last, i; u8 *addr, map; sprintf(name, "SABRE%d PBM%c", p->index, (pbm == &p->pbm_A ? 'A' : 'B')); pbm->io_space.name = pbm->mem_space.name = name; devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1); addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP); map = 0; pci_config_read8(addr, &map); first = 8; last = 0; for (i = 0; i < 8; i++) { if ((map & (1 << i)) != 0) { if (first > i) first = i; if (last < i) last = i; } } pbm->io_space.start = ibase + (first << 21UL); pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1); pbm->io_space.flags = IORESOURCE_IO; addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP); map = 0; pci_config_read8(addr, &map); first = 8; last = 0; for (i = 0; i < 8; i++) { if ((map & (1 << i)) != 0) { if (first > i) first = i; if (last < i) last = i; } } pbm->mem_space.start = mbase + (first << 29UL); pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1); pbm->mem_space.flags = IORESOURCE_MEM; if (request_resource(&ioport_resource, &pbm->io_space) < 0) { prom_printf("Cannot register PBM-%c's IO space.\n", (pbm == &p->pbm_A ? 'A' : 'B')); prom_halt(); } if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { prom_printf("Cannot register PBM-%c's MEM space.\n", (pbm == &p->pbm_A ? 'A' : 'B')); prom_halt(); } /* Register legacy regions if this PBM covers that area. */ if (pbm->io_space.start == ibase && pbm->mem_space.start == mbase) pci_register_legacy_regions(&pbm->io_space, &pbm->mem_space); } static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node, u32 dma_begin) { struct pci_pbm_info *pbm; char namebuf[128]; u32 busrange[2]; int node, simbas_found; simbas_found = 0; node = prom_getchild(sabre_node); while ((node = prom_searchsiblings(node, "pci")) != 0) { int err; err = prom_getproperty(node, "model", namebuf, sizeof(namebuf)); if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err)) goto next_pci; err = prom_getproperty(node, "bus-range", (char *)&busrange[0], sizeof(busrange)); if (err == 0 || err == -1) { prom_printf("APB: Error, cannot get PCI bus-range.\n"); prom_halt(); } simbas_found++; if (busrange[0] == 1) pbm = &p->pbm_B; else pbm = &p->pbm_A; pbm->chip_type = PBM_CHIP_TYPE_SABRE; pbm->parent = p; pbm->prom_node = node; pbm->pci_first_slot = 1; pbm->pci_first_busno = busrange[0]; pbm->pci_last_busno = busrange[1]; prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name)); err = prom_getproperty(node, "ranges", (char *)pbm->pbm_ranges, sizeof(pbm->pbm_ranges)); if (err != -1) pbm->num_pbm_ranges = (err / sizeof(struct linux_prom_pci_ranges)); else pbm->num_pbm_ranges = 0; err = prom_getproperty(node, "interrupt-map", (char *)pbm->pbm_intmap, sizeof(pbm->pbm_intmap)); if (err != -1) { pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); err = prom_getproperty(node, "interrupt-map-mask", (char *)&pbm->pbm_intmask, sizeof(pbm->pbm_intmask)); if (err == -1) { prom_printf("APB: Fatal error, no interrupt-map-mask.\n"); prom_halt(); } } else { pbm->num_pbm_intmap = 0; memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); } pbm_register_toplevel_resources(p, pbm); next_pci: node = prom_getsibling(node); if (!node) break; } if (simbas_found == 0) { int err; /* No APBs underneath, probably this is a hummingbird * system. */ pbm = &p->pbm_A; pbm->parent = p; pbm->prom_node = sabre_node; pbm->pci_first_busno = p->pci_first_busno; pbm->pci_last_busno = p->pci_last_busno; prom_getstring(sabre_node, "name", pbm->prom_name, sizeof(pbm->prom_name)); err = prom_getproperty(sabre_node, "ranges", (char *) pbm->pbm_ranges, sizeof(pbm->pbm_ranges)); if (err != -1) pbm->num_pbm_ranges = (err / sizeof(struct linux_prom_pci_ranges)); else pbm->num_pbm_ranges = 0; err = prom_getproperty(sabre_node, "interrupt-map", (char *) pbm->pbm_intmap, sizeof(pbm->pbm_intmap)); if (err != -1) { pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); err = prom_getproperty(sabre_node, "interrupt-map-mask", (char *)&pbm->pbm_intmask, sizeof(pbm->pbm_intmask)); if (err == -1) { prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n"); prom_halt(); } } else { pbm->num_pbm_intmap = 0; memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); } sprintf(pbm->name, "SABRE%d PBM%c", p->index, (pbm == &p->pbm_A ? 'A' : 'B')); pbm->io_space.name = pbm->mem_space.name = pbm->name; /* Hack up top-level resources. */ pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE; pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL; pbm->io_space.flags = IORESOURCE_IO; pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE; pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL; pbm->mem_space.flags = IORESOURCE_MEM; if (request_resource(&ioport_resource, &pbm->io_space) < 0) { prom_printf("Cannot register Hummingbird's IO space.\n"); prom_halt(); } if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { prom_printf("Cannot register Hummingbird's MEM space.\n"); prom_halt(); } pci_register_legacy_regions(&pbm->io_space, &pbm->mem_space); } } void __init sabre_init(int pnode, char *model_name) { struct linux_prom64_registers pr_regs[2]; struct pci_controller_info *p; struct pci_iommu *iommu; int tsbsize, err; u32 busrange[2]; u32 vdma[2]; u32 upa_portid, dma_mask; u64 clear_irq; hummingbird_p = 0; if (!strcmp(model_name, "pci108e,a001")) hummingbird_p = 1; else if (!strcmp(model_name, "SUNW,sabre")) { char compat[64]; if (prom_getproperty(pnode, "compatible", compat, sizeof(compat)) > 0 && !strcmp(compat, "pci108e,a001")) { hummingbird_p = 1; } else { int cpu_node; /* Of course, Sun has to encode things a thousand * different ways, inconsistently. */ cpu_find_by_instance(0, &cpu_node, NULL); if (prom_getproperty(cpu_node, "name", compat, sizeof(compat)) > 0 && !strcmp(compat, "SUNW,UltraSPARC-IIe")) hummingbird_p = 1; } } p = kmalloc(sizeof(*p), GFP_ATOMIC); if (!p) { prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n"); prom_halt(); } memset(p, 0, sizeof(*p)); iommu = kmalloc(sizeof(*iommu), GFP_ATOMIC); if (!iommu) { prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n"); prom_halt(); } memset(iommu, 0, sizeof(*iommu)); p->pbm_A.iommu = p->pbm_B.iommu = iommu; upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff); p->next = pci_controller_root; pci_controller_root = p; p->pbm_A.portid = upa_portid; p->pbm_B.portid = upa_portid; p->index = pci_num_controllers++; p->pbms_same_domain = 1; p->scan_bus = sabre_scan_bus; p->irq_build = sabre_irq_build; p->base_address_update = sabre_base_address_update; p->resource_adjust = sabre_resource_adjust; p->pci_ops = &sabre_ops; /* * Map in SABRE register set and report the presence of this SABRE. */ err = prom_getproperty(pnode, "reg", (char *)&pr_regs[0], sizeof(pr_regs)); if(err == 0 || err == -1) { prom_printf("SABRE: Error, cannot get U2P registers " "from PROM.\n"); prom_halt(); } /* * First REG in property is base of entire SABRE register space. */ p->pbm_A.controller_regs = pr_regs[0].phys_addr; p->pbm_B.controller_regs = pr_regs[0].phys_addr; pci_dma_wsync = p->pbm_A.controller_regs + SABRE_WRSYNC; printk("PCI: Found SABRE, main regs at %016lx, wsync at %016lx\n", p->pbm_A.controller_regs, pci_dma_wsync); /* Clear interrupts */ /* PCI first */ for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); /* Then OBIO */ for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); /* Error interrupts are enabled later after the bus scan. */ sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL, (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR | SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); /* Now map in PCI config space for entire SABRE. */ p->pbm_A.config_space = p->pbm_B.config_space = (p->pbm_A.controller_regs + SABRE_CONFIGSPACE); printk("SABRE: Shared PCI config space at %016lx\n", p->pbm_A.config_space); err = prom_getproperty(pnode, "virtual-dma", (char *)&vdma[0], sizeof(vdma)); if(err == 0 || err == -1) { prom_printf("SABRE: Error, cannot get virtual-dma property " "from PROM.\n"); prom_halt(); } dma_mask = vdma[0]; switch(vdma[1]) { case 0x20000000: dma_mask |= 0x1fffffff; tsbsize = 64; break; case 0x40000000: dma_mask |= 0x3fffffff; tsbsize = 128; break; case 0x80000000: dma_mask |= 0x7fffffff; tsbsize = 128; break; default: prom_printf("SABRE: strange virtual-dma size.\n"); prom_halt(); } sabre_iommu_init(p, tsbsize, vdma[0], dma_mask); printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]); err = prom_getproperty(pnode, "bus-range", (char *)&busrange[0], sizeof(busrange)); if(err == 0 || err == -1) { prom_printf("SABRE: Error, cannot get PCI bus-range " " from PROM.\n"); prom_halt(); } p->pci_first_busno = busrange[0]; p->pci_last_busno = busrange[1]; /* * Look for APB underneath. */ sabre_pbm_init(p, pnode, vdma[0]); } |