Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | /* * pSeries NUMA support * * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/threads.h> #include <linux/bootmem.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/module.h> #include <asm/lmb.h> #if 1 #define dbg(args...) udbg_printf(args) #else #define dbg(args...) #endif int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] = -1}; int numa_memory_lookup_table[MAX_MEMORY >> MEMORY_INCREMENT_SHIFT] = { [ 0 ... ((MAX_MEMORY >> MEMORY_INCREMENT_SHIFT) - 1)] = -1}; cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0}; struct pglist_data node_data[MAX_NUMNODES]; bootmem_data_t plat_node_bdata[MAX_NUMNODES]; EXPORT_SYMBOL(node_data); EXPORT_SYMBOL(numa_memory_lookup_table); static inline void map_cpu_to_node(int cpu, int node) { dbg("cpu %d maps to domain %d\n", cpu, node); numa_cpu_lookup_table[cpu] = node; if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) { cpu_set(cpu, numa_cpumask_lookup_table[node]); nr_cpus_in_node[node]++; } } static int __init parse_numa_properties(void) { struct device_node *cpu; struct device_node *memory; int *cpu_associativity; int *memory_associativity; int depth; int max_domain = 0; cpu = find_type_devices("cpu"); if (!cpu) return -1; memory = find_type_devices("memory"); if (!memory) return -1; cpu_associativity = (int *)get_property(cpu, "ibm,associativity", NULL); if (!cpu_associativity) return -1; memory_associativity = (int *)get_property(memory, "ibm,associativity", NULL); if (!memory_associativity) return -1; /* find common depth */ if (cpu_associativity[0] < memory_associativity[0]) depth = cpu_associativity[0]; else depth = memory_associativity[0]; for (cpu = find_type_devices("cpu"); cpu; cpu = cpu->next) { int *tmp; int cpu_nr, numa_domain; tmp = (int *)get_property(cpu, "reg", NULL); if (!tmp) continue; cpu_nr = *tmp; tmp = (int *)get_property(cpu, "ibm,associativity", NULL); if (!tmp) continue; numa_domain = tmp[depth]; /* FIXME */ if (numa_domain == 0xffff) { dbg("cpu %d has no numa doman\n", cpu_nr); numa_domain = 0; } if (numa_domain >= MAX_NUMNODES) BUG(); if (max_domain < numa_domain) max_domain = numa_domain; map_cpu_to_node(cpu_nr, numa_domain); } for (memory = find_type_devices("memory"); memory; memory = memory->next) { int *tmp1, *tmp2; unsigned long i; unsigned long start = 0; unsigned long size = 0; int numa_domain; int ranges; tmp1 = (int *)get_property(memory, "reg", NULL); if (!tmp1) continue; ranges = memory->n_addrs; new_range: i = prom_n_size_cells(memory); while (i--) { start = (start << 32) | *tmp1; tmp1++; } i = prom_n_size_cells(memory); while (i--) { size = (size << 32) | *tmp1; tmp1++; } start = _ALIGN_DOWN(start, MEMORY_INCREMENT); size = _ALIGN_UP(size, MEMORY_INCREMENT); if ((start + size) > MAX_MEMORY) BUG(); tmp2 = (int *)get_property(memory, "ibm,associativity", NULL); if (!tmp2) continue; numa_domain = tmp2[depth]; /* FIXME */ if (numa_domain == 0xffff) { dbg("memory has no numa doman\n"); numa_domain = 0; } if (numa_domain >= MAX_NUMNODES) BUG(); if (max_domain < numa_domain) max_domain = numa_domain; /* * For backwards compatibility, OF splits the first node * into two regions (the first being 0-4GB). Check for * this simple case and complain if there is a gap in * memory */ if (node_data[numa_domain].node_spanned_pages) { unsigned long shouldstart = node_data[numa_domain].node_start_pfn + node_data[numa_domain].node_spanned_pages; if (shouldstart != (start / PAGE_SIZE)) { printk(KERN_ERR "Hole in node, disabling " "region start %lx length %lx\n", start, size); continue; } node_data[numa_domain].node_spanned_pages += size / PAGE_SIZE; } else { node_data[numa_domain].node_start_pfn = start / PAGE_SIZE; node_data[numa_domain].node_spanned_pages = size / PAGE_SIZE; } for (i = start ; i < (start+size); i += MEMORY_INCREMENT) numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = numa_domain; dbg("memory region %lx to %lx maps to domain %d\n", start, start+size, numa_domain); ranges--; if (ranges) goto new_range; } numnodes = max_domain + 1; return 0; } void setup_nonnuma(void) { unsigned long i; for (i = 0; i < NR_CPUS; i++) map_cpu_to_node(i, 0); node_data[0].node_start_pfn = 0; node_data[0].node_spanned_pages = lmb_end_of_DRAM() / PAGE_SIZE; for (i = 0 ; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0; } void __init do_init_bootmem(void) { int nid; min_low_pfn = 0; max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; if (parse_numa_properties()) setup_nonnuma(); for (nid = 0; nid < numnodes; nid++) { unsigned long start_paddr, end_paddr; int i; unsigned long bootmem_paddr; unsigned long bootmap_pages; if (node_data[nid].node_spanned_pages == 0) continue; start_paddr = node_data[nid].node_start_pfn * PAGE_SIZE; end_paddr = start_paddr + (node_data[nid].node_spanned_pages * PAGE_SIZE); dbg("node %d\n", nid); dbg("start_paddr = %lx\n", start_paddr); dbg("end_paddr = %lx\n", end_paddr); NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT); dbg("bootmap_pages = %lx\n", bootmap_pages); bootmem_paddr = lmb_alloc_base(bootmap_pages << PAGE_SHIFT, PAGE_SIZE, end_paddr); dbg("bootmap_paddr = %lx\n", bootmem_paddr); init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, start_paddr >> PAGE_SHIFT, end_paddr >> PAGE_SHIFT); for (i = 0; i < lmb.memory.cnt; i++) { unsigned long physbase, size; unsigned long type = lmb.memory.region[i].type; if (type != LMB_MEMORY_AREA) continue; physbase = lmb.memory.region[i].physbase; size = lmb.memory.region[i].size; if (physbase < end_paddr && (physbase+size) > start_paddr) { /* overlaps */ if (physbase < start_paddr) { size -= start_paddr - physbase; physbase = start_paddr; } if (size > end_paddr - start_paddr) size = end_paddr - start_paddr; dbg("free_bootmem %lx %lx\n", physbase, size); free_bootmem_node(NODE_DATA(nid), physbase, size); } } for (i = 0; i < lmb.reserved.cnt; i++) { unsigned long physbase = lmb.reserved.region[i].physbase; unsigned long size = lmb.reserved.region[i].size; if (physbase < end_paddr && (physbase+size) > start_paddr) { /* overlaps */ if (physbase < start_paddr) { size -= start_paddr - physbase; physbase = start_paddr; } if (size > end_paddr - start_paddr) size = end_paddr - start_paddr; dbg("reserve_bootmem %lx %lx\n", physbase, size); reserve_bootmem_node(NODE_DATA(nid), physbase, size); } } } } void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES]; int i, nid; struct page *node_mem_map; for (i = 1; i < MAX_NR_ZONES; i++) zones_size[i] = 0; for (nid = 0; nid < numnodes; nid++) { unsigned long start_pfn; unsigned long end_pfn; start_pfn = plat_node_bdata[nid].node_boot_start >> PAGE_SHIFT; end_pfn = plat_node_bdata[nid].node_low_pfn; zones_size[ZONE_DMA] = end_pfn - start_pfn; dbg("free_area_init node %d %lx %lx\n", nid, zones_size[ZONE_DMA], start_pfn); /* * Give this empty node a dummy struct page to avoid * us from trying to allocate a node local mem_map * in free_area_init_node (which will fail). */ if (!node_data[nid].node_spanned_pages) node_mem_map = alloc_bootmem(sizeof(struct page)); else node_mem_map = NULL; free_area_init_node(nid, NODE_DATA(nid), node_mem_map, zones_size, start_pfn, NULL); } } |