Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 | /* * Fast Ethernet Controller (FCC) driver for Motorola MPC8260. * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net) * * This version of the driver is a combination of the 8xx fec and * 8260 SCC Ethernet drivers. This version has some additional * configuration options, which should probably be moved out of * here. This driver currently works for the EST SBC8260, * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others. * * Right now, I am very watseful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. Since this is a cache coherent processor and CPM, * I could also preallocate SKB's and use them directly on the interface. * */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <asm/immap_8260.h> #include <asm/pgtable.h> #include <asm/mpc8260.h> #include <asm/irq.h> #include <asm/bitops.h> #include <asm/uaccess.h> #include <asm/cpm_8260.h> /* The transmitter timeout */ #define TX_TIMEOUT (2*HZ) #ifdef CONFIG_USE_MDIO /* Forward declarations of some structures to support different PHYs */ typedef struct { uint mii_data; void (*funct)(uint mii_reg, struct net_device *dev); } phy_cmd_t; typedef struct { uint id; char *name; const phy_cmd_t *config; const phy_cmd_t *startup; const phy_cmd_t *ack_int; const phy_cmd_t *shutdown; } phy_info_t; /* Register definitions for the PHY. */ #define MII_REG_CR 0 /* Control Register */ #define MII_REG_SR 1 /* Status Register */ #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ #define MII_REG_ANAR 4 /* A-N Advertisement Register */ #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ #define MII_REG_ANER 6 /* A-N Expansion Register */ #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ /* values for phy_status */ #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ #endif /* CONFIG_USE_MDIO */ /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it is best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define FCC_ENET_RX_PAGES 16 #define FCC_ENET_RX_FRSIZE 2048 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE) #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES) #define TX_RING_SIZE 16 /* Must be power of two */ #define TX_RING_MOD_MASK 15 /* for this to work */ /* The FCC stores dest/src/type, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1518 #define PKT_MINBUF_SIZE 64 /* Maximum input DMA size. Must be a should(?) be a multiple of 4. */ #define PKT_MAXDMA_SIZE 1520 /* Maximum input buffer size. Must be a multiple of 32. */ #define PKT_MAXBLR_SIZE 1536 static int fcc_enet_open(struct net_device *dev); static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); static int fcc_enet_rx(struct net_device *dev); static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id, struct pt_regs *); static int fcc_enet_close(struct net_device *dev); static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); static void fcc_restart(struct net_device *dev, int duplex); static int fcc_enet_set_mac_address(struct net_device *dev, void *addr); /* These will be configurable for the FCC choice. * Multiple ports can be configured. There is little choice among the * I/O pins to the PHY, except the clocks. We will need some board * dependent clock selection. * Why in the hell did I put these inside #ifdef's? I dunno, maybe to * help show what pins are used for each device. */ /* I/O Pin assignment for FCC1. I don't yet know the best way to do this, * but there is little variation among the choices. */ #define PA1_COL ((uint)0x00000001) #define PA1_CRS ((uint)0x00000002) #define PA1_TXER ((uint)0x00000004) #define PA1_TXEN ((uint)0x00000008) #define PA1_RXDV ((uint)0x00000010) #define PA1_RXER ((uint)0x00000020) #define PA1_TXDAT ((uint)0x00003c00) #define PA1_RXDAT ((uint)0x0003c000) #define PA1_PSORA0 (PA1_RXDAT | PA1_TXDAT) #define PA1_PSORA1 (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \ PA1_RXDV | PA1_RXER) #define PA1_DIRA0 (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV) #define PA1_DIRA1 (PA1_TXDAT | PA1_TXEN | PA1_TXER) /* CLK12 is receive, CLK11 is transmit. These are board specific. */ #define PC_F1RXCLK ((uint)0x00000800) #define PC_F1TXCLK ((uint)0x00000400) #define CMX1_CLK_ROUTE ((uint)0x3e000000) #define CMX1_CLK_MASK ((uint)0xff000000) /* I/O Pin assignment for FCC2. I don't yet know the best way to do this, * but there is little variation among the choices. */ #define PB2_TXER ((uint)0x00000001) #define PB2_RXDV ((uint)0x00000002) #define PB2_TXEN ((uint)0x00000004) #define PB2_RXER ((uint)0x00000008) #define PB2_COL ((uint)0x00000010) #define PB2_CRS ((uint)0x00000020) #define PB2_TXDAT ((uint)0x000003c0) #define PB2_RXDAT ((uint)0x00003c00) #define PB2_PSORB0 (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \ PB2_RXER | PB2_RXDV | PB2_TXER) #define PB2_PSORB1 (PB2_TXEN) #define PB2_DIRB0 (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV) #define PB2_DIRB1 (PB2_TXDAT | PB2_TXEN | PB2_TXER) /* CLK13 is receive, CLK14 is transmit. These are board dependent. */ #define PC_F2RXCLK ((uint)0x00001000) #define PC_F2TXCLK ((uint)0x00002000) #define CMX2_CLK_ROUTE ((uint)0x00250000) #define CMX2_CLK_MASK ((uint)0x00ff0000) /* I/O Pin assignment for FCC3. I don't yet know the best way to do this, * but there is little variation among the choices. */ #define PB3_RXDV ((uint)0x00004000) #define PB3_RXER ((uint)0x00008000) #define PB3_TXER ((uint)0x00010000) #define PB3_TXEN ((uint)0x00020000) #define PB3_COL ((uint)0x00040000) #define PB3_CRS ((uint)0x00080000) #define PB3_TXDAT ((uint)0x0f000000) #define PB3_RXDAT ((uint)0x00f00000) #define PB3_PSORB0 (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \ PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN) #define PB3_PSORB1 (0) #define PB3_DIRB0 (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV) #define PB3_DIRB1 (PB3_TXDAT | PB3_TXEN | PB3_TXER) /* CLK15 is receive, CLK16 is transmit. These are board dependent. */ #define PC_F3RXCLK ((uint)0x00004000) #define PC_F3TXCLK ((uint)0x00008000) #define CMX3_CLK_ROUTE ((uint)0x00003700) #define CMX3_CLK_MASK ((uint)0x0000ff00) /* MII status/control serial interface. */ #ifdef CONFIG_TQM8260 /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */ #define PC_MDIO ((uint)0x00000002) #define PC_MDCK ((uint)0x00000001) #else #define PC_MDIO ((uint)0x00000004) #define PC_MDCK ((uint)0x00000020) #endif /* A table of information for supporting FCCs. This does two things. * First, we know how many FCCs we have and they are always externally * numbered from zero. Second, it holds control register and I/O * information that could be different among board designs. */ typedef struct fcc_info { uint fc_fccnum; uint fc_cpmblock; uint fc_cpmpage; uint fc_proff; uint fc_interrupt; uint fc_trxclocks; uint fc_clockroute; uint fc_clockmask; uint fc_mdio; uint fc_mdck; } fcc_info_t; static fcc_info_t fcc_ports[] = { #ifdef CONFIG_FCC1_ENET { 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1, (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK, # if defined(CONFIG_TQM8260) PC_MDIO, PC_MDCK }, # else 0x00000004, 0x00000100 }, # endif #endif #ifdef CONFIG_FCC2_ENET { 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2, (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK, # if defined(CONFIG_TQM8260) PC_MDIO, PC_MDCK }, # elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) 0x00400000, 0x00200000 }, # else 0x00000002, 0x00000080 }, # endif #endif #ifdef CONFIG_FCC3_ENET { 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3, (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK, # if defined(CONFIG_TQM8260) PC_MDIO, PC_MDCK }, # else 0x00000001, 0x00000040 }, # endif #endif }; /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct fcc_enet_private { /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses. */ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ cbd_t *tx_bd_base; cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ cbd_t *dirty_tx; /* The ring entries to be free()ed. */ volatile fcc_t *fccp; volatile fcc_enet_t *ep; struct net_device_stats stats; uint tx_full; spinlock_t lock; #ifdef CONFIG_USE_MDIO uint phy_id; uint phy_id_done; uint phy_status; phy_info_t *phy; struct tq_struct phy_task; uint sequence_done; uint phy_addr; #endif /* CONFIG_USE_MDIO */ int link; int old_link; int full_duplex; fcc_info_t *fip; }; static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, volatile immap_t *immap); static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev); static void init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io, volatile immap_t *immap); static void init_fcc_param(fcc_info_t *fip, struct net_device *dev, volatile immap_t *immap); #ifdef CONFIG_USE_MDIO static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *)); static uint mii_send_receive(fcc_info_t *fip, uint cmd); static void fcc_stop(struct net_device *dev); /* Make MII read/write commands for the FCC. */ #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ (VAL & 0xffff)) #define mk_mii_end 0 #endif /* CONFIG_USE_MDIO */ static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; volatile cbd_t *bdp; if (!cep->link) { /* Link is down or autonegotiation is in progress. */ return 1; } /* Fill in a Tx ring entry */ bdp = cep->cur_tx; #ifndef final_version if (bdp->cbd_sc & BD_ENET_TX_READY) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since cep->tx_full should be set. */ printk("%s: tx queue full!.\n", dev->name); return 1; } #endif /* Clear all of the status flags. */ bdp->cbd_sc &= ~BD_ENET_TX_STATS; /* If the frame is short, tell CPM to pad it. */ if (skb->len <= ETH_ZLEN) bdp->cbd_sc |= BD_ENET_TX_PAD; else bdp->cbd_sc &= ~BD_ENET_TX_PAD; /* Set buffer length and buffer pointer. */ bdp->cbd_datlen = skb->len; bdp->cbd_bufaddr = __pa(skb->data); /* Save skb pointer. */ cep->tx_skbuff[cep->skb_cur] = skb; cep->stats.tx_bytes += skb->len; cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; spin_lock_irq(&cep->lock); /* Send it on its way. Tell CPM its ready, interrupt when done, * its the last BD of the frame, and to put the CRC on the end. */ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); #if 0 /* Errata says don't do this. */ cep->fccp->fcc_ftodr = 0x8000; #endif dev->trans_start = jiffies; /* If this was the last BD in the ring, start at the beginning again. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; if (bdp->cbd_sc & BD_ENET_TX_READY) { netif_stop_queue(dev); cep->tx_full = 1; } cep->cur_tx = (cbd_t *)bdp; spin_unlock_irq(&cep->lock); return 0; } static void fcc_enet_timeout(struct net_device *dev) { struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; printk("%s: transmit timed out.\n", dev->name); cep->stats.tx_errors++; #ifndef final_version { int i; cbd_t *bdp; printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", cep->cur_tx, cep->tx_full ? " (full)" : "", cep->cur_rx); bdp = cep->tx_bd_base; printk(" Tx @base %p :\n", bdp); for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); bdp = cep->rx_bd_base; printk(" Rx @base %p :\n", bdp); for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); } #endif if (!cep->tx_full) netif_wake_queue(dev); } /* The interrupt handler. */ static irqreturn_t fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; volatile struct fcc_enet_private *cep; volatile cbd_t *bdp; ushort int_events; int must_restart; cep = (struct fcc_enet_private *)dev->priv; /* Get the interrupt events that caused us to be here. */ int_events = cep->fccp->fcc_fcce; cep->fccp->fcc_fcce = int_events; must_restart = 0; /* Handle receive event in its own function. */ if (int_events & FCC_ENET_RXF) fcc_enet_rx(dev_id); /* Check for a transmit error. The manual is a little unclear * about this, so the debug code until I get it figured out. It * appears that if TXE is set, then TXB is not set. However, * if carrier sense is lost during frame transmission, the TXE * bit is set, "and continues the buffer transmission normally." * I don't know if "normally" implies TXB is set when the buffer * descriptor is closed.....trial and error :-). */ /* Transmit OK, or non-fatal error. Update the buffer descriptors. */ if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) { spin_lock(&cep->lock); bdp = cep->dirty_tx; while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) break; if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ cep->stats.tx_heartbeat_errors++; if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ cep->stats.tx_window_errors++; if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ cep->stats.tx_aborted_errors++; if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ cep->stats.tx_fifo_errors++; if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ cep->stats.tx_carrier_errors++; /* No heartbeat or Lost carrier are not really bad errors. * The others require a restart transmit command. */ if (bdp->cbd_sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { must_restart = 1; cep->stats.tx_errors++; } cep->stats.tx_packets++; /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (bdp->cbd_sc & BD_ENET_TX_DEF) cep->stats.collisions++; /* Free the sk buffer associated with this last transmit. */ dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; /* Update pointer to next buffer descriptor to be transmitted. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; /* I don't know if we can be held off from processing these * interrupts for more than one frame time. I really hope * not. In such a case, we would now want to check the * currently available BD (cur_tx) and determine if any * buffers between the dirty_tx and cur_tx have also been * sent. We would want to process anything in between that * does not have BD_ENET_TX_READY set. */ /* Since we have freed up a buffer, the ring is no longer * full. */ if (cep->tx_full) { cep->tx_full = 0; if (netif_queue_stopped(dev)) { netif_wake_queue(dev); } } cep->dirty_tx = (cbd_t *)bdp; } if (must_restart) { volatile cpm8260_t *cp; /* Some transmit errors cause the transmitter to shut * down. We now issue a restart transmit. Since the * errors close the BD and update the pointers, the restart * _should_ pick up without having to reset any of our * pointers either. Also, To workaround 8260 device erratum * CPM37, we must disable and then re-enable the transmitter * following a Late Collision, Underrun, or Retry Limit error. */ cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT; udelay(10); /* wait a few microseconds just on principle */ cep->fccp->fcc_gfmr |= FCC_GFMR_ENT; cp = cpmp; cp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock, 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); } spin_unlock(&cep->lock); } /* Check for receive busy, i.e. packets coming but no place to * put them. */ if (int_events & FCC_ENET_BSY) { cep->stats.rx_dropped++; } return IRQ_HANDLED; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int fcc_enet_rx(struct net_device *dev) { struct fcc_enet_private *cep; volatile cbd_t *bdp; struct sk_buff *skb; ushort pkt_len; cep = (struct fcc_enet_private *)dev->priv; /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = cep->cur_rx; for (;;) { if (bdp->cbd_sc & BD_ENET_RX_EMPTY) break; #ifndef final_version /* Since we have allocated space to hold a complete frame, both * the first and last indicators should be set. */ if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) printk("CPM ENET: rcv is not first+last\n"); #endif /* Frame too long or too short. */ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) cep->stats.rx_length_errors++; if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ cep->stats.rx_frame_errors++; if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ cep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ cep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */ cep->stats.rx_frame_errors++; if (!(bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_CL))) { /* Process the incoming frame. */ cep->stats.rx_packets++; /* Remove the FCS from the packet length. */ pkt_len = bdp->cbd_datlen - 4; cep->stats.rx_bytes += pkt_len; /* This does 16 byte alignment, much more than we need. */ skb = dev_alloc_skb(pkt_len); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); cep->stats.rx_dropped++; } else { skb->dev = dev; skb_put(skb,pkt_len); /* Make room */ eth_copy_and_sum(skb, (unsigned char *)__va(bdp->cbd_bufaddr), pkt_len, 0); skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); } } /* Clear the status flags for this buffer. */ bdp->cbd_sc &= ~BD_ENET_RX_STATS; /* Mark the buffer empty. */ bdp->cbd_sc |= BD_ENET_RX_EMPTY; /* Update BD pointer to next entry. */ if (bdp->cbd_sc & BD_ENET_RX_WRAP) bdp = cep->rx_bd_base; else bdp++; } cep->cur_rx = (cbd_t *)bdp; return 0; } static int fcc_enet_close(struct net_device *dev) { /* Don't know what to do yet. */ netif_stop_queue(dev); return 0; } static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev) { struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; return &cep->stats; } #ifdef CONFIG_USE_MDIO /* NOTE: Most of the following comes from the FEC driver for 860. The * overall structure of MII code has been retained (as it's proved stable * and well-tested), but actual transfer requests are processed "at once" * instead of being queued (there's no interrupt-driven MII transfer * mechanism, one has to toggle the data/clock bits manually). */ static int mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) { struct fcc_enet_private *fep; int retval, tmp; /* Add PHY address to register command. */ fep = dev->priv; regval |= fep->phy_addr << 23; retval = 0; tmp = mii_send_receive(fep->fip, regval); if (func) func(tmp, dev); return retval; } static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) { int k; if(!c) return; for(k = 0; (c+k)->mii_data != mk_mii_end; k++) mii_queue(dev, (c+k)->mii_data, (c+k)->funct); } static void mii_parse_sr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); if (mii_reg & 0x0004) s |= PHY_STAT_LINK; if (mii_reg & 0x0010) s |= PHY_STAT_FAULT; if (mii_reg & 0x0020) s |= PHY_STAT_ANC; fep->phy_status = s; fep->link = (s & PHY_STAT_LINK) ? 1 : 0; } static void mii_parse_cr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); if (mii_reg & 0x1000) s |= PHY_CONF_ANE; if (mii_reg & 0x4000) s |= PHY_CONF_LOOP; fep->phy_status = s; } static void mii_parse_anar(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_CONF_SPMASK); if (mii_reg & 0x0020) s |= PHY_CONF_10HDX; if (mii_reg & 0x0040) s |= PHY_CONF_10FDX; if (mii_reg & 0x0080) s |= PHY_CONF_100HDX; if (mii_reg & 0x00100) s |= PHY_CONF_100FDX; fep->phy_status = s; } /* ------------------------------------------------------------------------- */ /* The Level one LXT970 is used by many boards */ #ifdef CONFIG_FCC_LXT970 #define MII_LXT970_MIRROR 16 /* Mirror register */ #define MII_LXT970_IER 17 /* Interrupt Enable Register */ #define MII_LXT970_ISR 18 /* Interrupt Status Register */ #define MII_LXT970_CONFIG 19 /* Configuration Register */ #define MII_LXT970_CSR 20 /* Chip Status Register */ static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x0800) { if (mii_reg & 0x1000) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } else { if (mii_reg & 0x1000) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } fep->phy_status = s; } static phy_info_t phy_info_lxt970 = { 0x07810000, "LXT970", (const phy_cmd_t []) { /* config */ #if 0 // { mk_mii_write(MII_REG_ANAR, 0x0021), NULL }, /* Set default operation of 100-TX....for some reason * some of these bits are set on power up, which is wrong. */ { mk_mii_write(MII_LXT970_CONFIG, 0), NULL }, #endif { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* read SR and ISR to acknowledge */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_LXT970_ISR), NULL }, /* find out the current status */ { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_LXT970 */ /* ------------------------------------------------------------------------- */ /* The Level one LXT971 is used on some of my custom boards */ #ifdef CONFIG_FCC_LXT971 /* register definitions for the 971 */ #define MII_LXT971_PCR 16 /* Port Control Register */ #define MII_LXT971_SR2 17 /* Status Register 2 */ #define MII_LXT971_IER 18 /* Interrupt Enable Register */ #define MII_LXT971_ISR 19 /* Interrupt Status Register */ #define MII_LXT971_LCR 20 /* LED Control Register */ #define MII_LXT971_TCR 30 /* Transmit Control Register */ /* * I had some nice ideas of running the MDIO faster... * The 971 should support 8MHz and I tried it, but things acted really * weird, so 2.5 MHz ought to be enough for anyone... */ static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); if (mii_reg & 0x4000) { if (mii_reg & 0x0200) s |= PHY_STAT_100FDX; else s |= PHY_STAT_100HDX; } else { if (mii_reg & 0x0200) s |= PHY_STAT_10FDX; else s |= PHY_STAT_10HDX; } if (mii_reg & 0x0008) s |= PHY_STAT_FAULT; fep->phy_status = s; } static phy_info_t phy_info_lxt971 = { 0x0001378e, "LXT971", (const phy_cmd_t []) { /* config */ // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ /* Somehow does the 971 tell me that the link is down * the first read after power-up. * read here to get a valid value in ack_int */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* find out the current status */ { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, /* we only need to read ISR to acknowledge */ { mk_mii_read(MII_LXT971_ISR), NULL }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_LXT970 */ /* ------------------------------------------------------------------------- */ /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ #ifdef CONFIG_FCC_QS6612 /* register definitions */ #define MII_QS6612_MCR 17 /* Mode Control Register */ #define MII_QS6612_FTR 27 /* Factory Test Register */ #define MII_QS6612_MCO 28 /* Misc. Control Register */ #define MII_QS6612_ISR 29 /* Interrupt Source Register */ #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; s &= ~(PHY_STAT_SPMASK); switch((mii_reg >> 2) & 7) { case 1: s |= PHY_STAT_10HDX; break; case 2: s |= PHY_STAT_100HDX; break; case 5: s |= PHY_STAT_10FDX; break; case 6: s |= PHY_STAT_100FDX; break; } fep->phy_status = s; } static phy_info_t phy_info_qs6612 = { 0x00181440, "QS6612", (const phy_cmd_t []) { /* config */ // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */ /* The PHY powers up isolated on the RPX, * so send a command to allow operation. */ { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, /* parse cr and anar to get some info */ { mk_mii_read(MII_REG_CR), mii_parse_cr }, { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, { mk_mii_end, } }, (const phy_cmd_t []) { /* startup - enable interrupts */ { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ { mk_mii_end, } }, (const phy_cmd_t []) { /* ack_int */ /* we need to read ISR, SR and ANER to acknowledge */ { mk_mii_read(MII_QS6612_ISR), NULL }, { mk_mii_read(MII_REG_SR), mii_parse_sr }, { mk_mii_read(MII_REG_ANER), NULL }, /* read pcr to get info */ { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, { mk_mii_end, } }, (const phy_cmd_t []) { /* shutdown - disable interrupts */ { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, { mk_mii_end, } }, }; #endif /* CONFIG_FEC_QS6612 */ static phy_info_t *phy_info[] = { #ifdef CONFIG_FCC_LXT970 &phy_info_lxt970, #endif /* CONFIG_FEC_LXT970 */ #ifdef CONFIG_FCC_LXT971 &phy_info_lxt971, #endif /* CONFIG_FEC_LXT971 */ #ifdef CONFIG_FCC_QS6612 &phy_info_qs6612, #endif /* CONFIG_FEC_LXT971 */ NULL }; static void mii_display_status(struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; if (!fep->link && !fep->old_link) { /* Link is still down - don't print anything */ return; } printk("%s: status: ", dev->name); if (!fep->link) { printk("link down"); } else { printk("link up"); switch(s & PHY_STAT_SPMASK) { case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; default: printk(", Unknown speed/duplex"); } if (s & PHY_STAT_ANC) printk(", auto-negotiation complete"); } if (s & PHY_STAT_FAULT) printk(", remote fault"); printk(".\n"); } static void mii_display_config(struct net_device *dev) { volatile struct fcc_enet_private *fep = dev->priv; uint s = fep->phy_status; printk("%s: config: auto-negotiation ", dev->name); if (s & PHY_CONF_ANE) printk("on"); else printk("off"); if (s & PHY_CONF_100FDX) printk(", 100FDX"); if (s & PHY_CONF_100HDX) printk(", 100HDX"); if (s & PHY_CONF_10FDX) printk(", 10FDX"); if (s & PHY_CONF_10HDX) printk(", 10HDX"); if (!(s & PHY_CONF_SPMASK)) printk(", No speed/duplex selected?"); if (s & PHY_CONF_LOOP) printk(", loopback enabled"); printk(".\n"); fep->sequence_done = 1; } static void mii_relink(struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; int duplex; fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; mii_display_status(dev); fep->old_link = fep->link; if (fep->link) { duplex = 0; if (fep->phy_status & (PHY_STAT_100FDX | PHY_STAT_10FDX)) duplex = 1; fcc_restart(dev, duplex); } else { fcc_stop(dev); } } static void mii_queue_relink(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; fep->phy_task.routine = (void *)mii_relink; fep->phy_task.data = dev; schedule_task(&fep->phy_task); } static void mii_queue_config(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; fep->phy_task.routine = (void *)mii_display_config; fep->phy_task.data = dev; schedule_task(&fep->phy_task); } phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink }, { mk_mii_end, } }; phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config }, { mk_mii_end, } }; /* Read remainder of PHY ID. */ static void mii_discover_phy3(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep; int i; fep = dev->priv; fep->phy_id |= (mii_reg & 0xffff); for(i = 0; phy_info[i]; i++) if(phy_info[i]->id == (fep->phy_id >> 4)) break; if(!phy_info[i]) panic("%s: PHY id 0x%08x is not supported!\n", dev->name, fep->phy_id); fep->phy = phy_info[i]; printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); } /* Scan all of the MII PHY addresses looking for someone to respond * with a valid ID. This usually happens quickly. */ static void mii_discover_phy(uint mii_reg, struct net_device *dev) { struct fcc_enet_private *fep; uint phytype; fep = dev->priv; if ((phytype = (mii_reg & 0xfff)) != 0xfff) { /* Got first part of ID, now get remainder. */ fep->phy_id = phytype << 16; mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3); } else { fep->phy_addr++; if (fep->phy_addr < 32) { mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); } else { printk("fec: No PHY device found.\n"); } } } /* This interrupt occurs when the PHY detects a link change. */ static irqreturn_t mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; struct fcc_enet_private *fep = dev->priv; mii_do_cmd(dev, fep->phy->ack_int); mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ return IRQ_HANDLED; } #endif /* CONFIG_USE_MDIO */ /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ static void set_multicast_list(struct net_device *dev) { struct fcc_enet_private *cep; struct dev_mc_list *dmi; u_char *mcptr, *tdptr; volatile fcc_enet_t *ep; int i, j; cep = (struct fcc_enet_private *)dev->priv; return; /* Get pointer to FCC area in parameter RAM. */ ep = (fcc_enet_t *)dev->base_addr; if (dev->flags&IFF_PROMISC) { /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO; } else { cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO; if (dev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's. */ ep->fen_gaddrh = 0xffffffff; ep->fen_gaddrl = 0xffffffff; } else { /* Clear filter and add the addresses in the list. */ ep->fen_gaddrh = 0; ep->fen_gaddrl = 0; dmi = dev->mc_list; for (i=0; i<dev->mc_count; i++) { /* Only support group multicast for now. */ if (!(dmi->dmi_addr[0] & 1)) continue; /* The address in dmi_addr is LSB first, * and taddr is MSB first. We have to * copy bytes MSB first from dmi_addr. */ mcptr = (u_char *)dmi->dmi_addr + 5; tdptr = (u_char *)&ep->fen_taddrh; for (j=0; j<6; j++) *tdptr++ = *mcptr--; /* Ask CPM to run CRC and set bit in * filter mask. */ cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock, 0x0c, CPM_CR_SET_GADDR) | CPM_CR_FLG; udelay(10); while (cpmp->cp_cpcr & CPM_CR_FLG); } } } } /* Set the individual MAC address. */ int fcc_enet_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr= (struct sockaddr *) p; struct fcc_enet_private *cep; volatile fcc_enet_t *ep; unsigned char *eap; int i; cep = (struct fcc_enet_private *)(dev->priv); ep = cep->ep; if (netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); eap = (unsigned char *) &(ep->fen_paddrh); for (i=5; i>=0; i--) *eap++ = addr->sa_data[i]; return 0; } /* Initialize the CPM Ethernet on FCC. */ static int __init fec_enet_init(void) { struct net_device *dev; struct fcc_enet_private *cep; fcc_info_t *fip; int i, np, err; volatile immap_t *immap; volatile iop8260_t *io; immap = (immap_t *)IMAP_ADDR; /* and to internal registers */ io = &immap->im_ioport; np = sizeof(fcc_ports) / sizeof(fcc_info_t); fip = fcc_ports; while (np-- > 0) { /* Create an Ethernet device instance. */ dev = alloc_etherdev(sizeof(*cep)); if (!dev) return -ENOMEM; cep = dev->priv; spin_lock_init(&cep->lock); cep->fip = fip; init_fcc_shutdown(fip, cep, immap); init_fcc_ioports(fip, io, immap); init_fcc_param(fip, dev, immap); dev->base_addr = (unsigned long)(cep->ep); /* The CPM Ethernet specific entries in the device * structure. */ dev->open = fcc_enet_open; dev->hard_start_xmit = fcc_enet_start_xmit; dev->tx_timeout = fcc_enet_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->stop = fcc_enet_close; dev->get_stats = fcc_enet_get_stats; dev->set_multicast_list = set_multicast_list; dev->set_mac_address = fcc_enet_set_mac_address; init_fcc_startup(fip, dev); err = register_netdev(dev); if (err) { kfree(dev); return err; } printk("%s: FCC ENET Version 0.3, ", dev->name); for (i=0; i<5; i++) printk("%02x:", dev->dev_addr[i]); printk("%02x\n", dev->dev_addr[5]); #ifdef CONFIG_USE_MDIO /* Queue up command to detect the PHY and initialize the * remainder of the interface. */ cep->phy_addr = 0; mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); #endif /* CONFIG_USE_MDIO */ fip++; } return 0; } module_init(fec_enet_init); /* Make sure the device is shut down during initialization. */ static void __init init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, volatile immap_t *immap) { volatile fcc_enet_t *ep; volatile fcc_t *fccp; /* Get pointer to FCC area in parameter RAM. */ ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]); /* And another to the FCC register area. */ fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]); cep->fccp = fccp; /* Keep the pointers handy */ cep->ep = ep; /* Disable receive and transmit in case someone left it running. */ fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); } /* Initialize the I/O pins for the FCC Ethernet. */ static void __init init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io, volatile immap_t *immap) { /* FCC1 pins are on port A/C. FCC2/3 are port B/C. */ if (fip->fc_proff == PROFF_FCC1) { /* Configure port A and C pins for FCC1 Ethernet. */ io->iop_pdira &= ~PA1_DIRA0; io->iop_pdira |= PA1_DIRA1; io->iop_psora &= ~PA1_PSORA0; io->iop_psora |= PA1_PSORA1; io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1); } if (fip->fc_proff == PROFF_FCC2) { /* Configure port B and C pins for FCC Ethernet. */ io->iop_pdirb &= ~PB2_DIRB0; io->iop_pdirb |= PB2_DIRB1; io->iop_psorb &= ~PB2_PSORB0; io->iop_psorb |= PB2_PSORB1; io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1); } if (fip->fc_proff == PROFF_FCC3) { /* Configure port B and C pins for FCC Ethernet. */ io->iop_pdirb &= ~PB3_DIRB0; io->iop_pdirb |= PB3_DIRB1; io->iop_psorb &= ~PB3_PSORB0; io->iop_psorb |= PB3_PSORB1; io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1); } /* Port C has clocks...... */ io->iop_psorc &= ~(fip->fc_trxclocks); io->iop_pdirc &= ~(fip->fc_trxclocks); io->iop_pparc |= fip->fc_trxclocks; #ifdef CONFIG_USE_MDIO /* ....and the MII serial clock/data. */ io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck); io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck); io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck); io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck); #endif /* CONFIG_USE_MDIO */ /* Configure Serial Interface clock routing. * First, clear all FCC bits to zero, * then set the ones we want. */ immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask); immap->im_cpmux.cmx_fcr |= fip->fc_clockroute; } static void __init init_fcc_param(fcc_info_t *fip, struct net_device *dev, volatile immap_t *immap) { unsigned char *eap; unsigned long mem_addr; bd_t *bd; int i, j; struct fcc_enet_private *cep; volatile fcc_enet_t *ep; volatile cbd_t *bdp; volatile cpm8260_t *cp; cep = (struct fcc_enet_private *)(dev->priv); ep = cep->ep; cp = cpmp; bd = (bd_t *)__res; /* Zero the whole thing.....I must have missed some individually. * It works when I do this. */ memset((char *)ep, 0, sizeof(fcc_enet_t)); /* Allocate space for the buffer descriptors in the DP ram. * These are relative offsets in the DP ram address space. * Initialize base addresses for the buffer descriptors. */ #if 0 /* I really want to do this, but for some reason it doesn't * work with the data cache enabled, so I allocate from the * main memory instead. */ i = m8260_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); ep->fen_genfcc.fcc_rbase = (uint)&immap->im_dprambase[i]; cep->rx_bd_base = (cbd_t *)&immap->im_dprambase[i]; i = m8260_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); ep->fen_genfcc.fcc_tbase = (uint)&immap->im_dprambase[i]; cep->tx_bd_base = (cbd_t *)&immap->im_dprambase[i]; #else cep->rx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base); cep->tx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base); #endif cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; cep->cur_rx = cep->rx_bd_base; ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24; ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24; /* Set maximum bytes per receive buffer. * It must be a multiple of 32. */ ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE; /* Allocate space in the reserved FCC area of DPRAM for the * internal buffers. No one uses this space (yet), so we * can do this. Later, we will add resource management for * this area. */ mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128); ep->fen_genfcc.fcc_riptr = mem_addr; ep->fen_genfcc.fcc_tiptr = mem_addr+32; ep->fen_padptr = mem_addr+64; memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32); ep->fen_genfcc.fcc_rbptr = 0; ep->fen_genfcc.fcc_tbptr = 0; ep->fen_genfcc.fcc_rcrc = 0; ep->fen_genfcc.fcc_tcrc = 0; ep->fen_genfcc.fcc_res1 = 0; ep->fen_genfcc.fcc_res2 = 0; ep->fen_camptr = 0; /* CAM isn't used in this driver */ /* Set CRC preset and mask. */ ep->fen_cmask = 0xdebb20e3; ep->fen_cpres = 0xffffffff; ep->fen_crcec = 0; /* CRC Error counter */ ep->fen_alec = 0; /* alignment error counter */ ep->fen_disfc = 0; /* discard frame counter */ ep->fen_retlim = 15; /* Retry limit threshold */ ep->fen_pper = 0; /* Normal persistence */ /* Clear hash filter tables. */ ep->fen_gaddrh = 0; ep->fen_gaddrl = 0; ep->fen_iaddrh = 0; ep->fen_iaddrl = 0; /* Clear the Out-of-sequence TxBD. */ ep->fen_tfcstat = 0; ep->fen_tfclen = 0; ep->fen_tfcptr = 0; ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ /* Set Ethernet station address. * * This is supplied in the board information structure, so we * copy that into the controller. * So, far we have only been given one Ethernet address. We make * it unique by setting a few bits in the upper byte of the * non-static part of the address. */ eap = (unsigned char *)&(ep->fen_paddrh); for (i=5; i>=0; i--) { if (i == 3) { dev->dev_addr[i] = bd->bi_enetaddr[i]; dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum)); *eap++ = dev->dev_addr[i]; } else { *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; } } ep->fen_taddrh = 0; ep->fen_taddrm = 0; ep->fen_taddrl = 0; ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */ ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */ /* Clear stat counters, in case we ever enable RMON. */ ep->fen_octc = 0; ep->fen_colc = 0; ep->fen_broc = 0; ep->fen_mulc = 0; ep->fen_uspc = 0; ep->fen_frgc = 0; ep->fen_ospc = 0; ep->fen_jbrc = 0; ep->fen_p64c = 0; ep->fen_p65c = 0; ep->fen_p128c = 0; ep->fen_p256c = 0; ep->fen_p512c = 0; ep->fen_p1024c = 0; ep->fen_rfthr = 0; /* Suggested by manual */ ep->fen_rfcnt = 0; ep->fen_cftype = 0; /* Now allocate the host memory pages and initialize the * buffer descriptors. */ bdp = cep->tx_bd_base; for (i=0; i<TX_RING_SIZE; i++) { /* Initialize the BD for every fragment in the page. */ bdp->cbd_sc = 0; bdp->cbd_datlen = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; bdp = cep->rx_bd_base; for (i=0; i<FCC_ENET_RX_PAGES; i++) { /* Allocate a page. */ mem_addr = __get_free_page(GFP_KERNEL); /* Initialize the BD for every fragment in the page. */ for (j=0; j<FCC_ENET_RX_FRPPG; j++) { bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; bdp->cbd_datlen = 0; bdp->cbd_bufaddr = __pa(mem_addr); mem_addr += FCC_ENET_RX_FRSIZE; bdp++; } } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Let's re-initialize the channel now. We have to do it later * than the manual describes because we have just now finished * the BD initialization. */ cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); cep->skb_cur = cep->skb_dirty = 0; } /* Let 'er rip. */ static void __init init_fcc_startup(fcc_info_t *fip, struct net_device *dev) { volatile fcc_t *fccp; struct fcc_enet_private *cep; cep = (struct fcc_enet_private *)(dev->priv); fccp = cep->fccp; fccp->fcc_fcce = 0xffff; /* Clear any pending events */ /* Enable interrupts for transmit error, complete frame * received, and any transmit buffer we have also set the * interrupt flag. */ fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB); /* Install our interrupt handler. */ if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet", dev) < 0) printk("Can't get FCC IRQ %d\n", fip->fc_interrupt); #ifdef CONFIG_USE_MDIO if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) < 0) printk("Can't get MII IRQ %d\n", fip->fc_interrupt); #endif /* CONFIG_USE_MDIO */ /* Set GFMR to enable Ethernet operating mode. */ fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET); /* Set sync/delimiters. */ fccp->fcc_fdsr = 0xd555; /* Set protocol specific processing mode for Ethernet. * This has to be adjusted for Full Duplex operation after we can * determine how to detect that. */ fccp->fcc_fpsmr = FCC_PSMR_ENCRC; #ifdef CONFIG_ADS8260 /* Enable the PHY. */ ads_csr_addr[1] |= BCSR1_FETH_RST; /* Remove reset */ ads_csr_addr[1] &= ~BCSR1_FETHIEN; /* Enable */ #endif #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260) /* start in full duplex mode, and negotiate speed */ fcc_restart (dev, 1); #else /* start in half duplex mode */ fcc_restart (dev, 0); #endif } #ifdef CONFIG_USE_MDIO /* MII command/status interface. * I'm not going to describe all of the details. You can find the * protocol definition in many other places, including the data sheet * of most PHY parts. * I wonder what "they" were thinking (maybe weren't) when they leave * the I2C in the CPM but I have to toggle these bits...... */ #define FCC_PDATC_MDIO(bit) \ if (bit) \ io->iop_pdatc |= fip->fc_mdio; \ else \ io->iop_pdatc &= ~fip->fc_mdio; #define FCC_PDATC_MDC(bit) \ if (bit) \ io->iop_pdatc |= fip->fc_mdck; \ else \ io->iop_pdatc &= ~fip->fc_mdck; static uint mii_send_receive(fcc_info_t *fip, uint cmd) { uint retval; int read_op, i, off; volatile immap_t *immap; volatile iop8260_t *io; immap = (immap_t *)IMAP_ADDR; io = &immap->im_ioport; io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck); read_op = ((cmd & 0xf0000000) == 0x60000000); /* Write preamble */ for (i = 0; i < 32; i++) { FCC_PDATC_MDC(0); FCC_PDATC_MDIO(1); udelay(1); FCC_PDATC_MDC(1); udelay(1); } /* Write data */ for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off) { FCC_PDATC_MDC(0); FCC_PDATC_MDIO((cmd >> off) & 0x00000001); udelay(1); FCC_PDATC_MDC(1); udelay(1); } retval = cmd; if (read_op) { retval >>= 16; FCC_PDATC_MDC(0); io->iop_pdirc &= ~fip->fc_mdio; udelay(1); FCC_PDATC_MDC(1); udelay(1); FCC_PDATC_MDC(0); udelay(1); for (i = 0, off = 15; i < 16; i++, off--) { FCC_PDATC_MDC(1); retval <<= 1; if (io->iop_pdatc & fip->fc_mdio) retval++; udelay(1); FCC_PDATC_MDC(0); udelay(1); } } io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck); for (i = 0; i < 32; i++) { FCC_PDATC_MDC(0); FCC_PDATC_MDIO(1); udelay(1); FCC_PDATC_MDC(1); udelay(1); } return retval; } static void fcc_stop(struct net_device *dev) { volatile fcc_t *fccp; struct fcc_enet_private *fcp; fcp = (struct fcc_enet_private *)(dev->priv); fccp = fcp->fccp; /* Disable transmit/receive */ fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); } #endif /* CONFIG_USE_MDIO */ static void fcc_restart(struct net_device *dev, int duplex) { volatile fcc_t *fccp; struct fcc_enet_private *fcp; fcp = (struct fcc_enet_private *)(dev->priv); fccp = fcp->fccp; if (duplex) fccp->fcc_fpsmr |= FCC_PSMR_FDE; else fccp->fcc_fpsmr &= ~FCC_PSMR_FDE; /* Enable transmit/receive */ fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT; } static int fcc_enet_open(struct net_device *dev) { struct fcc_enet_private *fep = dev->priv; #ifdef CONFIG_USE_MDIO fep->sequence_done = 0; fep->link = 0; if (fep->phy) { mii_do_cmd(dev, fep->phy->ack_int); mii_do_cmd(dev, fep->phy->config); mii_do_cmd(dev, phy_cmd_config); /* display configuration */ while(!fep->sequence_done) schedule(); mii_do_cmd(dev, fep->phy->startup); netif_start_queue(dev); return 0; /* Success */ } return -ENODEV; /* No PHY we understand */ #else fep->link = 1; netif_start_queue(dev); return 0; /* Always succeed */ #endif /* CONFIG_USE_MDIO */ } |