Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/* 
 * Direct MTD block device access
 *
 * $Id: mtdblock.c,v 1.47 2001/10/02 15:05:11 dwmw2 Exp $
 *
 * 02-nov-2000	Nicolas Pitre		Added read-modify-write with cache
 */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/compatmac.h>
#include <linux/buffer_head.h>

#define MAJOR_NR MTD_BLOCK_MAJOR
#define DEVICE_NAME "mtdblock"
#define DEVICE_NR(device) (device)
#define LOCAL_END_REQUEST
#include <linux/blk.h>
#include <linux/devfs_fs_kernel.h>

static void mtd_notify_add(struct mtd_info* mtd);
static void mtd_notify_remove(struct mtd_info* mtd);
static struct mtd_notifier notifier = {
        mtd_notify_add,
        mtd_notify_remove,
        NULL
};

static struct mtdblk_dev {
	struct mtd_info *mtd; /* Locked */
	int count;
	struct semaphore cache_sem;
	unsigned char *cache_data;
	unsigned long cache_offset;
	unsigned int cache_size;
	enum { STATE_EMPTY, STATE_CLEAN, STATE_DIRTY } cache_state;
} *mtdblks[MAX_MTD_DEVICES];

static struct gendisk *mtddisk[MAX_MTD_DEVICES];

static spinlock_t mtdblks_lock;

/*
 * Cache stuff...
 * 
 * Since typical flash erasable sectors are much larger than what Linux's
 * buffer cache can handle, we must implement read-modify-write on flash
 * sectors for each block write requests.  To avoid over-erasing flash sectors
 * and to speed things up, we locally cache a whole flash sector while it is
 * being written to until a different sector is required.
 */

static void erase_callback(struct erase_info *done)
{
	wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
	wake_up(wait_q);
}

static int erase_write (struct mtd_info *mtd, unsigned long pos, 
			int len, const char *buf)
{
	struct erase_info erase;
	DECLARE_WAITQUEUE(wait, current);
	wait_queue_head_t wait_q;
	size_t retlen;
	int ret;

	/*
	 * First, let's erase the flash block.
	 */

	init_waitqueue_head(&wait_q);
	erase.mtd = mtd;
	erase.callback = erase_callback;
	erase.addr = pos;
	erase.len = len;
	erase.priv = (u_long)&wait_q;

	set_current_state(TASK_INTERRUPTIBLE);
	add_wait_queue(&wait_q, &wait);

	ret = MTD_ERASE(mtd, &erase);
	if (ret) {
		set_current_state(TASK_RUNNING);
		remove_wait_queue(&wait_q, &wait);
		printk (KERN_WARNING "mtdblock: erase of region [0x%lx, 0x%x] "
				     "on \"%s\" failed\n",
			pos, len, mtd->name);
		return ret;
	}

	schedule();  /* Wait for erase to finish. */
	remove_wait_queue(&wait_q, &wait);

	/*
	 * Next, writhe data to flash.
	 */

	ret = MTD_WRITE (mtd, pos, len, &retlen, buf);
	if (ret)
		return ret;
	if (retlen != len)
		return -EIO;
	return 0;
}


static int write_cached_data (struct mtdblk_dev *mtdblk)
{
	struct mtd_info *mtd = mtdblk->mtd;
	int ret;

	if (mtdblk->cache_state != STATE_DIRTY)
		return 0;

	DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: writing cached data for \"%s\" "
			"at 0x%lx, size 0x%x\n", mtd->name, 
			mtdblk->cache_offset, mtdblk->cache_size);
	
	ret = erase_write (mtd, mtdblk->cache_offset, 
			   mtdblk->cache_size, mtdblk->cache_data);
	if (ret)
		return ret;

	/*
	 * Here we could argably set the cache state to STATE_CLEAN.
	 * However this could lead to inconsistency since we will not 
	 * be notified if this content is altered on the flash by other 
	 * means.  Let's declare it empty and leave buffering tasks to
	 * the buffer cache instead.
	 */
	mtdblk->cache_state = STATE_EMPTY;
	return 0;
}


static int do_cached_write (struct mtdblk_dev *mtdblk, unsigned long pos, 
			    int len, const char *buf)
{
	struct mtd_info *mtd = mtdblk->mtd;
	unsigned int sect_size = mtdblk->cache_size;
	size_t retlen;
	int ret;

	DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: write on \"%s\" at 0x%lx, size 0x%x\n",
		mtd->name, pos, len);
	
	if (!sect_size)
		return MTD_WRITE (mtd, pos, len, &retlen, buf);

	while (len > 0) {
		unsigned long sect_start = (pos/sect_size)*sect_size;
		unsigned int offset = pos - sect_start;
		unsigned int size = sect_size - offset;
		if( size > len ) 
			size = len;

		if (size == sect_size) {
			/* 
			 * We are covering a whole sector.  Thus there is no
			 * need to bother with the cache while it may still be
			 * useful for other partial writes.
			 */
			ret = erase_write (mtd, pos, size, buf);
			if (ret)
				return ret;
		} else {
			/* Partial sector: need to use the cache */

			if (mtdblk->cache_state == STATE_DIRTY &&
			    mtdblk->cache_offset != sect_start) {
				ret = write_cached_data(mtdblk);
				if (ret) 
					return ret;
			}

			if (mtdblk->cache_state == STATE_EMPTY ||
			    mtdblk->cache_offset != sect_start) {
				/* fill the cache with the current sector */
				mtdblk->cache_state = STATE_EMPTY;
				ret = MTD_READ(mtd, sect_start, sect_size, &retlen, mtdblk->cache_data);
				if (ret)
					return ret;
				if (retlen != sect_size)
					return -EIO;

				mtdblk->cache_offset = sect_start;
				mtdblk->cache_size = sect_size;
				mtdblk->cache_state = STATE_CLEAN;
			}

			/* write data to our local cache */
			memcpy (mtdblk->cache_data + offset, buf, size);
			mtdblk->cache_state = STATE_DIRTY;
		}

		buf += size;
		pos += size;
		len -= size;
	}

	return 0;
}


static int do_cached_read (struct mtdblk_dev *mtdblk, unsigned long pos, 
			   int len, char *buf)
{
	struct mtd_info *mtd = mtdblk->mtd;
	unsigned int sect_size = mtdblk->cache_size;
	size_t retlen;
	int ret;

	DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: read on \"%s\" at 0x%lx, size 0x%x\n", 
			mtd->name, pos, len);
	
	if (!sect_size)
		return MTD_READ (mtd, pos, len, &retlen, buf);

	while (len > 0) {
		unsigned long sect_start = (pos/sect_size)*sect_size;
		unsigned int offset = pos - sect_start;
		unsigned int size = sect_size - offset;
		if (size > len) 
			size = len;

		/*
		 * Check if the requested data is already cached
		 * Read the requested amount of data from our internal cache if it
		 * contains what we want, otherwise we read the data directly
		 * from flash.
		 */
		if (mtdblk->cache_state != STATE_EMPTY &&
		    mtdblk->cache_offset == sect_start) {
			memcpy (buf, mtdblk->cache_data + offset, size);
		} else {
			ret = MTD_READ (mtd, pos, size, &retlen, buf);
			if (ret)
				return ret;
			if (retlen != size)
				return -EIO;
		}

		buf += size;
		pos += size;
		len -= size;
	}

	return 0;
}

static struct block_device_operations mtd_fops;

static int mtdblock_open(struct inode *inode, struct file *file)
{
	struct mtdblk_dev *mtdblk;
	struct mtd_info *mtd;
	int dev = minor(inode->i_rdev);
	struct gendisk *disk;

	DEBUG(MTD_DEBUG_LEVEL1,"mtdblock_open\n");

	if (dev >= MAX_MTD_DEVICES)
		return -EINVAL;

	mtd = get_mtd_device(NULL, dev);
	if (!mtd)
		return -ENODEV;
	if (MTD_ABSENT == mtd->type) {
		put_mtd_device(mtd);
		return -ENODEV;
	}
	
	spin_lock(&mtdblks_lock);

	/* If it's already open, no need to piss about. */
	if (mtdblks[dev]) {
		mtdblks[dev]->count++;
		spin_unlock(&mtdblks_lock);
		return 0;
	}
	
	/* OK, it's not open. Try to find it */

	/* First we have to drop the lock, because we have to
	   to things which might sleep.
	*/
	spin_unlock(&mtdblks_lock);

	mtdblk = kmalloc(sizeof(struct mtdblk_dev), GFP_KERNEL);
	disk = mtddisk[dev];
	if (!mtdblk || !disk)
		goto Enomem;
	memset(mtdblk, 0, sizeof(*mtdblk));
	mtdblk->count = 1;
	mtdblk->mtd = mtd;

	init_MUTEX (&mtdblk->cache_sem);
	mtdblk->cache_state = STATE_EMPTY;
	if ((mtdblk->mtd->flags & MTD_CAP_RAM) != MTD_CAP_RAM &&
	    mtdblk->mtd->erasesize) {
		mtdblk->cache_size = mtdblk->mtd->erasesize;
		mtdblk->cache_data = vmalloc(mtdblk->mtd->erasesize);
		if (!mtdblk->cache_data)
			goto Enomem;
	}

	/* OK, we've created a new one. Add it to the list. */

	spin_lock(&mtdblks_lock);

	if (mtdblks[dev]) {
		/* Another CPU made one at the same time as us. */
		mtdblks[dev]->count++;
		spin_unlock(&mtdblks_lock);
		put_mtd_device(mtdblk->mtd);
		vfree(mtdblk->cache_data);
		kfree(mtdblk);
		return 0;
	}

	mtdblks[dev] = mtdblk;
	set_device_ro(inode->i_bdev, !(mtdblk->mtd->flags & MTD_WRITEABLE));

	spin_unlock(&mtdblks_lock);

	DEBUG(MTD_DEBUG_LEVEL1, "ok\n");

	return 0;
Enomem:
	put_mtd_device(mtd);
	kfree(mtdblk);
	return -ENOMEM;
}

static release_t mtdblock_release(struct inode *inode, struct file *file)
{
	int dev;
	struct mtdblk_dev *mtdblk;
   	DEBUG(MTD_DEBUG_LEVEL1, "mtdblock_release\n");

	if (inode == NULL)
		release_return(-ENODEV);

	dev = minor(inode->i_rdev);
	mtdblk = mtdblks[dev];

	down(&mtdblk->cache_sem);
	write_cached_data(mtdblk);
	up(&mtdblk->cache_sem);

	spin_lock(&mtdblks_lock);
	if (!--mtdblk->count) {
		/* It was the last usage. Free the device */
		mtdblks[dev] = NULL;
		spin_unlock(&mtdblks_lock);
		if (mtdblk->mtd->sync)
			mtdblk->mtd->sync(mtdblk->mtd);
		put_mtd_device(mtdblk->mtd);
		vfree(mtdblk->cache_data);
		kfree(mtdblk);
	} else {
		spin_unlock(&mtdblks_lock);
	}

	DEBUG(MTD_DEBUG_LEVEL1, "ok\n");

	release_return(0);
}  


/* 
 * This is a special request_fn because it is executed in a process context 
 * to be able to sleep independently of the caller.  The queue_lock 
 * is held upon entry and exit.
 * The head of our request queue is considered active so there is no need 
 * to dequeue requests before we are done.
 */
static struct request_queue mtd_queue;
static void handle_mtdblock_request(void)
{
	struct request *req;
	struct mtdblk_dev *mtdblk;
	unsigned int res;

	while ((req = elv_next_request(&mtd_queue) != NULL) {
		struct mtdblk_dev **p = req->rq_disk->private_data;
		spin_unlock_irq(mtd_queue.queue_lock);
		mtdblk = *p;
		res = 0;

		if (! (req->flags & REQ_CMD))
			goto end_req;

		if ((req->sector + req->current_nr_sectors) > (mtdblk->mtd->size >> 9))
			goto end_req;

		// Handle the request
		switch (rq_data_dir(req))
		{
			int err;

			case READ:
			down(&mtdblk->cache_sem);
			err = do_cached_read (mtdblk, req->sector << 9, 
					req->current_nr_sectors << 9,
					req->buffer);
			up(&mtdblk->cache_sem);
			if (!err)
				res = 1;
			break;

			case WRITE:
			// Read only device
			if ( !(mtdblk->mtd->flags & MTD_WRITEABLE) ) 
				break;

			// Do the write
			down(&mtdblk->cache_sem);
			err = do_cached_write (mtdblk, req->sector << 9,
					req->current_nr_sectors << 9, 
					req->buffer);
			up(&mtdblk->cache_sem);
			if (!err)
				res = 1;
			break;
		}

end_req:
		spin_lock_irq(mtd_queue.queue_lock);
		if (!end_that_request_first(req, res, req->hard_cur_sectors)) {
			blkdev_dequeue_request(req);
			end_that_request_last(req);
		}

	}
}

static volatile int leaving = 0;
static DECLARE_MUTEX_LOCKED(thread_sem);
static DECLARE_WAIT_QUEUE_HEAD(thr_wq);

int mtdblock_thread(void *dummy)
{
	struct task_struct *tsk = current;
	DECLARE_WAITQUEUE(wait, tsk);

	/* we might get involved when memory gets low, so use PF_MEMALLOC */
	tsk->flags |= PF_MEMALLOC;
	daemonize("mtdblockd");

	while (!leaving) {
		add_wait_queue(&thr_wq, &wait);
		set_current_state(TASK_INTERRUPTIBLE);
		spin_lock_irq(mtd_queue.queue_lock);
		if (!elv_next_request(&mtd_queue) || blk_queue_plugged(&mtd_queue)) {
			spin_unlock_irq(mtd_queue.queue_lock);
			schedule();
			remove_wait_queue(&thr_wq, &wait); 
		} else {
			remove_wait_queue(&thr_wq, &wait); 
			set_current_state(TASK_RUNNING);
			handle_mtdblock_request();
			spin_unlock_irq(mtd_queue.queue_lock);
		}
	}

	up(&thread_sem);
	return 0;
}

static void mtdblock_request(struct request_queue *q)
{
	/* Don't do anything, except wake the thread if necessary */
	wake_up(&thr_wq);
}


static int mtdblock_ioctl(struct inode * inode, struct file * file,
		      unsigned int cmd, unsigned long arg)
{
	struct mtdblk_dev *mtdblk;

	mtdblk = mtdblks[minor(inode->i_rdev)];

#ifdef PARANOIA
	if (!mtdblk)
		BUG();
#endif

	switch (cmd) {
	case BLKFLSBUF:
		fsync_bdev(inode->i_bdev);
		invalidate_bdev(inode->i_bdev, 0);
		down(&mtdblk->cache_sem);
		write_cached_data(mtdblk);
		up(&mtdblk->cache_sem);
		if (mtdblk->mtd->sync)
			mtdblk->mtd->sync(mtdblk->mtd);
		return 0;

	default:
		return -EINVAL;
	}
}

static struct block_device_operations mtd_fops = 
{
	.owner		= THIS_MODULE,
	.open		= mtdblock_open,
	.release	= mtdblock_release,
	.ioctl		= mtdblock_ioctl
};

/* Notification that a new device has been added. Create the devfs entry for
 * it. */

static void mtd_notify_add(struct mtd_info* mtd)
{
	struct gendisk *disk;
        char name[16];

        if (!mtd || mtd->type == MTD_ABSENT)
                return;

#ifdef CONFIG_DEVFS_FS
        sprintf(name, DEVICE_NAME"/%d", mtd->index);
        devfs_register(NULL, name, DEVFS_FL_DEFAULT,
			MTD_BLOCK_MAJOR, mtd->index,
                        S_IFBLK | S_IRUGO | S_IWUGO,
                        &mtd_fops, NULL);
#endif

	disk = alloc_disk(1);
	if (disk) {
		disk->major = MAJOR_NR;
		disk->first_minor = mtd->index;
		disk->fops = &mtd_fops;
		sprintf(disk->disk_name, "mtdblock%d", mtd->index);

		mtddisk[mtd->index] = disk;
		set_capacity(disk, mtd->size / 512);
		disk->private_data = &mtdblks[mtd->index];
		disk->queue = &mtd_queue;
		add_disk(disk);
	}
}

static void mtd_notify_remove(struct mtd_info* mtd)
{
        if (!mtd || mtd->type == MTD_ABSENT)
                return;

        devfs_remove(DEVICE_NAME"/%d", mtd->index);

        if (mtddisk[mtd->index]) {
		del_gendisk(mtddisk[mtd->index]);
        	put_disk(mtddisk[mtd->index]);
        	mtddisk[mtd->index] = NULL;
        }
}

static spinlock_t mtddev_lock = SPIN_LOCK_UNLOCKED;

int __init init_mtdblock(void)
{
	spin_lock_init(&mtdblks_lock);

	if (register_blkdev(MAJOR_NR, DEVICE_NAME))
		return -EAGAIN;

#ifdef CONFIG_DEVFS_FS
	devfs_mk_dir(DEVICE_NAME);
#endif
	register_mtd_user(&notifier);
	
	init_waitqueue_head(&thr_wq);
	blk_init_queue(&mtd_queue, &mtdblock_request, &mtddev_lock);
	kernel_thread (mtdblock_thread, NULL, CLONE_FS|CLONE_FILES|CLONE_SIGHAND);
	return 0;
}

static void __exit cleanup_mtdblock(void)
{
	leaving = 1;
	wake_up(&thr_wq);
	down(&thread_sem);
	unregister_mtd_user(&notifier);
#ifdef CONFIG_DEVFS_FS
	devfs_remove(DEVICE_NAME);
#endif
	unregister_blkdev(MAJOR_NR,DEVICE_NAME);
	blk_cleanup_queue(&mtd_queue);
}

module_init(init_mtdblock);
module_exit(cleanup_mtdblock);


MODULE_LICENSE("GPL");
MODULE_AUTHOR("Nicolas Pitre <nico@cam.org> et al.");
MODULE_DESCRIPTION("Caching read/erase/writeback block device emulation access to MTD devices");