Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (c) 1994 - 1997, 1999, 2000  Ralf Baechle (ralf@gnu.org)
 * Copyright (c) 2000  Silicon Graphics, Inc.
 */
#ifndef _ASM_BITOPS_H
#define _ASM_BITOPS_H

#include <linux/types.h>
#include <asm/byteorder.h>		/* sigh ... */

#ifdef __KERNEL__

#include <asm/sgidefs.h>
#include <asm/system.h>
#include <linux/config.h>

/*
 * clear_bit() doesn't provide any barrier for the compiler.
 */
#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/*
 * Only disable interrupt for kernel mode stuff to keep usermode stuff
 * that dares to use kernel include files alive.
 */
#define __bi_flags unsigned long flags
#define __bi_cli() __cli()
#define __bi_save_flags(x) __save_flags(x)
#define __bi_save_and_cli(x) __save_and_cli(x)
#define __bi_restore_flags(x) __restore_flags(x)
#else
#define __bi_flags
#define __bi_cli()
#define __bi_save_flags(x)
#define __bi_save_and_cli(x)
#define __bi_restore_flags(x)
#endif /* __KERNEL__ */

#ifdef CONFIG_CPU_HAS_LLSC

#include <asm/mipsregs.h>

/*
 * These functions for MIPS ISA > 1 are interrupt and SMP proof and
 * interrupt friendly
 */

/*
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
extern __inline__ void
set_bit(int nr, volatile void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
	unsigned long temp;

	__asm__ __volatile__(
		"1:\tll\t%0, %1\t\t# set_bit\n\t"
		"or\t%0, %2\n\t"
		"sc\t%0, %1\n\t"
		"beqz\t%0, 1b"
		: "=&r" (temp), "=m" (*m)
		: "ir" (1UL << (nr & 0x1f)), "m" (*m));
}

/*
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
extern __inline__ void __set_bit(int nr, volatile void * addr)
{
	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);

	*m |= 1UL << (nr & 31);
}

/*
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
extern __inline__ void
clear_bit(int nr, volatile void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
	unsigned long temp;

	__asm__ __volatile__(
		"1:\tll\t%0, %1\t\t# clear_bit\n\t"
		"and\t%0, %2\n\t"
		"sc\t%0, %1\n\t"
		"beqz\t%0, 1b\n\t"
		: "=&r" (temp), "=m" (*m)
		: "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
}

/*
 * change_bit - Toggle a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
extern __inline__ void
change_bit(int nr, volatile void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
	unsigned long temp;

	__asm__ __volatile__(
		"1:\tll\t%0, %1\t\t# change_bit\n\t"
		"xor\t%0, %2\n\t"
		"sc\t%0, %1\n\t"
		"beqz\t%0, 1b"
		: "=&r" (temp), "=m" (*m)
		: "ir" (1UL << (nr & 0x1f)), "m" (*m));
}

/*
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
extern __inline__ void __change_bit(int nr, volatile void * addr)
{
	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);

	*m ^= 1UL << (nr & 31);
}

/*
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
extern __inline__ int
test_and_set_bit(int nr, volatile void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
	unsigned long temp, res;

	__asm__ __volatile__(
		".set\tnoreorder\t\t# test_and_set_bit\n"
		"1:\tll\t%0, %1\n\t"
		"or\t%2, %0, %3\n\t"
		"sc\t%2, %1\n\t"
		"beqz\t%2, 1b\n\t"
		" and\t%2, %0, %3\n\t"
		".set\treorder"
		: "=&r" (temp), "=m" (*m), "=&r" (res)
		: "r" (1UL << (nr & 0x1f)), "m" (*m)
		: "memory");

	return res != 0;
}

/*
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
	int mask, retval;
	volatile int *a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	retval = (mask & *a) != 0;
	*a |= mask;

	return retval;
}

/*
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
extern __inline__ int
test_and_clear_bit(int nr, volatile void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
	unsigned long temp, res;

	__asm__ __volatile__(
		".set\tnoreorder\t\t# test_and_clear_bit\n"
		"1:\tll\t%0, %1\n\t"
		"or\t%2, %0, %3\n\t"
		"xor\t%2, %3\n\t"
		"sc\t%2, %1\n\t"
		"beqz\t%2, 1b\n\t"
		" and\t%2, %0, %3\n\t"
		".set\treorder"
		: "=&r" (temp), "=m" (*m), "=&r" (res)
		: "r" (1UL << (nr & 0x1f)), "m" (*m)
		: "memory");

	return res != 0;
}

/*
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	retval = (mask & *a) != 0;
	*a &= ~mask;

	return retval;
}

/*
 * test_and_change_bit - Change a bit and return its new value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
extern __inline__ int
test_and_change_bit(int nr, volatile void *addr)
{
	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
	unsigned long temp, res;

	__asm__ __volatile__(
		".set\tnoreorder\t\t# test_and_change_bit\n"
		"1:\tll\t%0, %1\n\t"
		"xor\t%2, %0, %3\n\t"
		"sc\t%2, %1\n\t"
		"beqz\t%2, 1b\n\t"
		" and\t%2, %0, %3\n\t"
		".set\treorder"
		: "=&r" (temp), "=m" (*m), "=&r" (res)
		: "r" (1UL << (nr & 0x1f)), "m" (*m)
		: "memory");

	return res != 0;
}

/*
 * __test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	retval = (mask & *a) != 0;
	*a ^= mask;

	return retval;
}

#else /* MIPS I */

/*
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
extern __inline__ void set_bit(int nr, volatile void * addr)
{
	int	mask;
	volatile int	*a = addr;
	__bi_flags;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	__bi_save_and_cli(flags);
	*a |= mask;
	__bi_restore_flags(flags);
}

/*
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
extern __inline__ void __set_bit(int nr, volatile void * addr)
{
	int	mask;
	volatile int	*a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	*a |= mask;
}

/*
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
extern __inline__ void clear_bit(int nr, volatile void * addr)
{
	int	mask;
	volatile int	*a = addr;
	__bi_flags;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	__bi_save_and_cli(flags);
	*a &= ~mask;
	__bi_restore_flags(flags);
}

/*
 * change_bit - Toggle a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
extern __inline__ void change_bit(int nr, volatile void * addr)
{
	int	mask;
	volatile int	*a = addr;
	__bi_flags;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	__bi_save_and_cli(flags);
	*a ^= mask;
	__bi_restore_flags(flags);
}

/*
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
extern __inline__ void __change_bit(int nr, volatile void * addr)
{
	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);

	*m ^= 1UL << (nr & 31);
}

/*
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;
	__bi_flags;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	__bi_save_and_cli(flags);
	retval = (mask & *a) != 0;
	*a |= mask;
	__bi_restore_flags(flags);

	return retval;
}

/*
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	retval = (mask & *a) != 0;
	*a |= mask;

	return retval;
}

/*
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;
	__bi_flags;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	__bi_save_and_cli(flags);
	retval = (mask & *a) != 0;
	*a &= ~mask;
	__bi_restore_flags(flags);

	return retval;
}

/*
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	retval = (mask & *a) != 0;
	*a &= ~mask;

	return retval;
}

/*
 * test_and_change_bit - Change a bit and return its new value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
 * It also implies a memory barrier.
 */
extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;
	__bi_flags;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	__bi_save_and_cli(flags);
	retval = (mask & *a) != 0;
	*a ^= mask;
	__bi_restore_flags(flags);

	return retval;
}

/*
 * __test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
	int	mask, retval;
	volatile int	*a = addr;

	a += nr >> 5;
	mask = 1 << (nr & 0x1f);
	retval = (mask & *a) != 0;
	*a ^= mask;

	return retval;
}

#undef __bi_flags
#undef __bi_cli
#undef __bi_save_flags
#undef __bi_restore_flags

#endif /* MIPS I */

/*
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
extern __inline__ int test_bit(int nr, volatile void *addr)
{
	return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
}

#ifndef __MIPSEB__

/* Little endian versions. */

/*
 * find_first_zero_bit - find the first zero bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum size to search
 *
 * Returns the bit-number of the first zero bit, not the number of the byte
 * containing a bit.
 */
extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
{
	unsigned long dummy;
	int res;

	if (!size)
		return 0;

	__asm__ (".set\tnoreorder\n\t"
		".set\tnoat\n"
		"1:\tsubu\t$1,%6,%0\n\t"
		"blez\t$1,2f\n\t"
		"lw\t$1,(%5)\n\t"
		"addiu\t%5,4\n\t"
#if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
    (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
    (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
		"beql\t%1,$1,1b\n\t"
		"addiu\t%0,32\n\t"
#else
		"addiu\t%0,32\n\t"
		"beq\t%1,$1,1b\n\t"
		"nop\n\t"
		"subu\t%0,32\n\t"
#endif
#ifdef __MIPSEB__
#error "Fix this for big endian"
#endif /* __MIPSEB__ */
		"li\t%1,1\n"
		"1:\tand\t%2,$1,%1\n\t"
		"beqz\t%2,2f\n\t"
		"sll\t%1,%1,1\n\t"
		"bnez\t%1,1b\n\t"
		"add\t%0,%0,1\n\t"
		".set\tat\n\t"
		".set\treorder\n"
		"2:"
		: "=r" (res), "=r" (dummy), "=r" (addr)
		: "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
		  "2" (addr), "r" (size)
		: "$1");

	return res;
}

/*
 * find_next_zero_bit - find the first zero bit in a memory region
 * @addr: The address to base the search on
 * @offset: The bitnumber to start searching at
 * @size: The maximum size to search
 */
extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
	int set = 0, bit = offset & 31, res;
	unsigned long dummy;
	
	if (bit) {
		/*
		 * Look for zero in first byte
		 */
#ifdef __MIPSEB__
#error "Fix this for big endian byte order"
#endif
		__asm__(".set\tnoreorder\n\t"
			".set\tnoat\n"
			"1:\tand\t$1,%4,%1\n\t"
			"beqz\t$1,1f\n\t"
			"sll\t%1,%1,1\n\t"
			"bnez\t%1,1b\n\t"
			"addiu\t%0,1\n\t"
			".set\tat\n\t"
			".set\treorder\n"
			"1:"
			: "=r" (set), "=r" (dummy)
			: "0" (0), "1" (1 << bit), "r" (*p)
			: "$1");
		if (set < (32 - bit))
			return set + offset;
		set = 32 - bit;
		p++;
	}
	/*
	 * No zero yet, search remaining full bytes for a zero
	 */
	res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
	return offset + set + res;
}

#endif /* !(__MIPSEB__) */

/*
 * ffz - find first zero in word.
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
extern __inline__ unsigned long ffz(unsigned long word)
{
	unsigned int	__res;
	unsigned int	mask = 1;

	__asm__ (
		".set\tnoreorder\n\t"
		".set\tnoat\n\t"
		"move\t%0,$0\n"
		"1:\tand\t$1,%2,%1\n\t"
		"beqz\t$1,2f\n\t"
		"sll\t%1,1\n\t"
		"bnez\t%1,1b\n\t"
		"addiu\t%0,1\n\t"
		".set\tat\n\t"
		".set\treorder\n"
		"2:\n\t"
		: "=&r" (__res), "=r" (mask)
		: "r" (word), "1" (mask)
		: "$1");

	return __res;
}

#ifdef __KERNEL__

/**
 * ffs - find first bit set
 * @x: the word to search
 *
 * This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */

#define ffs(x) generic_ffs(x)

/*
 * hweightN - returns the hamming weight of a N-bit word
 * @x: the word to weigh
 *
 * The Hamming Weight of a number is the total number of bits set in it.
 */

#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)

#endif /* __KERNEL__ */

#ifdef __MIPSEB__
/*
 * find_next_zero_bit - find the first zero bit in a memory region
 * @addr: The address to base the search on
 * @offset: The bitnumber to start searching at
 * @size: The maximum size to search
 */
extern __inline__ int find_next_zero_bit(void *addr, int size, int offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

/* Linus sez that gcc can optimize the following correctly, we'll see if this
 * holds on the Sparc as it does for the ALPHA.
 */

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/*
 * find_first_zero_bit - find the first zero bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum size to search
 *
 * Returns the bit-number of the first zero bit, not the number of the byte
 * containing a bit.
 */
extern int find_first_zero_bit (void *addr, unsigned size);
#endif

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

#endif /* (__MIPSEB__) */

/* Now for the ext2 filesystem bit operations and helper routines. */

#ifdef __MIPSEB__
extern __inline__ int ext2_set_bit(int nr, void * addr)
{
	int		mask, retval, flags;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	save_and_cli(flags);
	retval = (mask & *ADDR) != 0;
	*ADDR |= mask;
	restore_flags(flags);
	return retval;
}

extern __inline__ int ext2_clear_bit(int nr, void * addr)
{
	int		mask, retval, flags;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	save_and_cli(flags);
	retval = (mask & *ADDR) != 0;
	*ADDR &= ~mask;
	restore_flags(flags);
	return retval;
}

extern __inline__ int ext2_test_bit(int nr, const void * addr)
{
	int			mask;
	const unsigned char	*ADDR = (const unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	return ((mask & *ADDR) != 0);
}

#define ext2_find_first_zero_bit(addr, size) \
        ext2_find_next_zero_bit((addr), (size), 0)

extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		/* We hold the little endian value in tmp, but then the
		 * shift is illegal. So we could keep a big endian value
		 * in tmp, like this:
		 *
		 * tmp = __swab32(*(p++));
		 * tmp |= ~0UL >> (32-offset);
		 *
		 * but this would decrease preformance, so we change the
		 * shift:
		 */
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	/* tmp is little endian, so we would have to swab the shift,
	 * see above. But then we have to swab tmp below for ffz, so
	 * we might as well do this here.
	 */
	return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab32(tmp));
}
#else /* !(__MIPSEB__) */

/* Native ext2 byte ordering, just collapse using defines. */
#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
#define ext2_find_next_zero_bit(addr, size, offset) \
                find_next_zero_bit((addr), (size), (offset))
 
#endif /* !(__MIPSEB__) */

/*
 * Bitmap functions for the minix filesystem.
 * FIXME: These assume that Minix uses the native byte/bitorder.
 * This limits the Minix filesystem's value for data exchange very much.
 */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)

#endif /* _ASM_BITOPS_H */