Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The Internet Protocol (IP) module. * * Version: $Id: ip_input.c,v 1.53 2000/12/18 19:01:50 davem Exp $ * * Authors: Ross Biro, <bir7@leland.Stanford.Edu> * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Donald Becker, <becker@super.org> * Alan Cox, <Alan.Cox@linux.org> * Richard Underwood * Stefan Becker, <stefanb@yello.ping.de> * Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * * * Fixes: * Alan Cox : Commented a couple of minor bits of surplus code * Alan Cox : Undefining IP_FORWARD doesn't include the code * (just stops a compiler warning). * Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes * are junked rather than corrupting things. * Alan Cox : Frames to bad broadcast subnets are dumped * We used to process them non broadcast and * boy could that cause havoc. * Alan Cox : ip_forward sets the free flag on the * new frame it queues. Still crap because * it copies the frame but at least it * doesn't eat memory too. * Alan Cox : Generic queue code and memory fixes. * Fred Van Kempen : IP fragment support (borrowed from NET2E) * Gerhard Koerting: Forward fragmented frames correctly. * Gerhard Koerting: Fixes to my fix of the above 8-). * Gerhard Koerting: IP interface addressing fix. * Linus Torvalds : More robustness checks * Alan Cox : Even more checks: Still not as robust as it ought to be * Alan Cox : Save IP header pointer for later * Alan Cox : ip option setting * Alan Cox : Use ip_tos/ip_ttl settings * Alan Cox : Fragmentation bogosity removed * (Thanks to Mark.Bush@prg.ox.ac.uk) * Dmitry Gorodchanin : Send of a raw packet crash fix. * Alan Cox : Silly ip bug when an overlength * fragment turns up. Now frees the * queue. * Linus Torvalds/ : Memory leakage on fragmentation * Alan Cox : handling. * Gerhard Koerting: Forwarding uses IP priority hints * Teemu Rantanen : Fragment problems. * Alan Cox : General cleanup, comments and reformat * Alan Cox : SNMP statistics * Alan Cox : BSD address rule semantics. Also see * UDP as there is a nasty checksum issue * if you do things the wrong way. * Alan Cox : Always defrag, moved IP_FORWARD to the config.in file * Alan Cox : IP options adjust sk->priority. * Pedro Roque : Fix mtu/length error in ip_forward. * Alan Cox : Avoid ip_chk_addr when possible. * Richard Underwood : IP multicasting. * Alan Cox : Cleaned up multicast handlers. * Alan Cox : RAW sockets demultiplex in the BSD style. * Gunther Mayer : Fix the SNMP reporting typo * Alan Cox : Always in group 224.0.0.1 * Pauline Middelink : Fast ip_checksum update when forwarding * Masquerading support. * Alan Cox : Multicast loopback error for 224.0.0.1 * Alan Cox : IP_MULTICAST_LOOP option. * Alan Cox : Use notifiers. * Bjorn Ekwall : Removed ip_csum (from slhc.c too) * Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!) * Stefan Becker : Send out ICMP HOST REDIRECT * Arnt Gulbrandsen : ip_build_xmit * Alan Cox : Per socket routing cache * Alan Cox : Fixed routing cache, added header cache. * Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it. * Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net. * Alan Cox : Incoming IP option handling. * Alan Cox : Set saddr on raw output frames as per BSD. * Alan Cox : Stopped broadcast source route explosions. * Alan Cox : Can disable source routing * Takeshi Sone : Masquerading didn't work. * Dave Bonn,Alan Cox : Faster IP forwarding whenever possible. * Alan Cox : Memory leaks, tramples, misc debugging. * Alan Cox : Fixed multicast (by popular demand 8)) * Alan Cox : Fixed forwarding (by even more popular demand 8)) * Alan Cox : Fixed SNMP statistics [I think] * Gerhard Koerting : IP fragmentation forwarding fix * Alan Cox : Device lock against page fault. * Alan Cox : IP_HDRINCL facility. * Werner Almesberger : Zero fragment bug * Alan Cox : RAW IP frame length bug * Alan Cox : Outgoing firewall on build_xmit * A.N.Kuznetsov : IP_OPTIONS support throughout the kernel * Alan Cox : Multicast routing hooks * Jos Vos : Do accounting *before* call_in_firewall * Willy Konynenberg : Transparent proxying support * * * * To Fix: * IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient * and could be made very efficient with the addition of some virtual memory hacks to permit * the allocation of a buffer that can then be 'grown' by twiddling page tables. * Output fragmentation wants updating along with the buffer management to use a single * interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet * output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause * fragmentation anyway. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <asm/system.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/config.h> #include <linux/net.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <net/snmp.h> #include <net/ip.h> #include <net/protocol.h> #include <net/route.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/arp.h> #include <net/icmp.h> #include <net/raw.h> #include <net/checksum.h> #include <linux/netfilter_ipv4.h> #include <linux/mroute.h> #include <linux/netlink.h> /* * SNMP management statistics */ struct ip_mib ip_statistics[NR_CPUS*2]; /* * Process Router Attention IP option */ int ip_call_ra_chain(struct sk_buff *skb) { struct ip_ra_chain *ra; u8 protocol = skb->nh.iph->protocol; struct sock *last = NULL; read_lock(&ip_ra_lock); for (ra = ip_ra_chain; ra; ra = ra->next) { struct sock *sk = ra->sk; /* If socket is bound to an interface, only report * the packet if it came from that interface. */ if (sk && sk->num == protocol && ((sk->bound_dev_if == 0) || (sk->bound_dev_if == skb->dev->ifindex))) { if (skb->nh.iph->frag_off & htons(IP_MF|IP_OFFSET)) { skb = ip_defrag(skb); if (skb == NULL) { read_unlock(&ip_ra_lock); return 1; } } if (last) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) raw_rcv(last, skb2); } last = sk; } } if (last) { raw_rcv(last, skb); read_unlock(&ip_ra_lock); return 1; } read_unlock(&ip_ra_lock); return 0; } /* Handle this out of line, it is rare. */ static int ip_run_ipprot(struct sk_buff *skb, struct iphdr *iph, struct inet_protocol *ipprot, int force_copy) { int ret = 0; do { if (ipprot->protocol == iph->protocol) { struct sk_buff *skb2 = skb; if (ipprot->copy || force_copy) skb2 = skb_clone(skb, GFP_ATOMIC); if(skb2 != NULL) { ret = 1; ipprot->handler(skb2); } } ipprot = (struct inet_protocol *) ipprot->next; } while(ipprot != NULL); return ret; } static inline int ip_local_deliver_finish(struct sk_buff *skb) { int ihl = skb->nh.iph->ihl*4; #ifdef CONFIG_NETFILTER_DEBUG nf_debug_ip_local_deliver(skb); #endif /*CONFIG_NETFILTER_DEBUG*/ /* Pull out additionl 8 bytes to save some space in protocols. */ if (!pskb_may_pull(skb, ihl+8)) goto out; __skb_pull(skb, ihl); #ifdef CONFIG_NETFILTER /* Free reference early: we don't need it any more, and it may hold ip_conntrack module loaded indefinitely. */ nf_conntrack_put(skb->nfct); skb->nfct = NULL; #endif /*CONFIG_NETFILTER*/ /* Point into the IP datagram, just past the header. */ skb->h.raw = skb->data; { /* Note: See raw.c and net/raw.h, RAWV4_HTABLE_SIZE==MAX_INET_PROTOS */ int protocol = skb->nh.iph->protocol; int hash = protocol & (MAX_INET_PROTOS - 1); struct sock *raw_sk = raw_v4_htable[hash]; struct inet_protocol *ipprot; int flag; /* If there maybe a raw socket we must check - if not we * don't care less */ if(raw_sk != NULL) raw_sk = raw_v4_input(skb, skb->nh.iph, hash); ipprot = (struct inet_protocol *) inet_protos[hash]; flag = 0; if(ipprot != NULL) { if(raw_sk == NULL && ipprot->next == NULL && ipprot->protocol == protocol) { int ret; /* Fast path... */ ret = ipprot->handler(skb); return ret; } else { flag = ip_run_ipprot(skb, skb->nh.iph, ipprot, (raw_sk != NULL)); } } /* All protocols checked. * If this packet was a broadcast, we may *not* reply to it, since that * causes (proven, grin) ARP storms and a leakage of memory (i.e. all * ICMP reply messages get queued up for transmission...) */ if(raw_sk != NULL) { /* Shift to last raw user */ raw_rcv(raw_sk, skb); sock_put(raw_sk); } else if (!flag) { /* Free and report errors */ icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PROT_UNREACH, 0); out: kfree_skb(skb); } } return 0; } /* * Deliver IP Packets to the higher protocol layers. */ int ip_local_deliver(struct sk_buff *skb) { /* * Reassemble IP fragments. */ if (skb->nh.iph->frag_off & htons(IP_MF|IP_OFFSET)) { skb = ip_defrag(skb); if (!skb) return 0; } return NF_HOOK(PF_INET, NF_IP_LOCAL_IN, skb, skb->dev, NULL, ip_local_deliver_finish); } static inline int ip_rcv_finish(struct sk_buff *skb) { struct net_device *dev = skb->dev; struct iphdr *iph = skb->nh.iph; /* * Initialise the virtual path cache for the packet. It describes * how the packet travels inside Linux networking. */ if (skb->dst == NULL) { if (ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev)) goto drop; } #ifdef CONFIG_NET_CLS_ROUTE if (skb->dst->tclassid) { struct ip_rt_acct *st = ip_rt_acct + 256*smp_processor_id(); u32 idx = skb->dst->tclassid; st[idx&0xFF].o_packets++; st[idx&0xFF].o_bytes+=skb->len; st[(idx>>16)&0xFF].i_packets++; st[(idx>>16)&0xFF].i_bytes+=skb->len; } #endif if (iph->ihl > 5) { struct ip_options *opt; /* It looks as overkill, because not all IP options require packet mangling. But it is the easiest for now, especially taking into account that combination of IP options and running sniffer is extremely rare condition. --ANK (980813) */ if (skb_cow(skb, skb_headroom(skb))) goto drop; iph = skb->nh.iph; skb->ip_summed = 0; if (ip_options_compile(NULL, skb)) goto inhdr_error; opt = &(IPCB(skb)->opt); if (opt->srr) { struct in_device *in_dev = in_dev_get(dev); if (in_dev) { if (!IN_DEV_SOURCE_ROUTE(in_dev)) { if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) printk(KERN_INFO "source route option %u.%u.%u.%u -> %u.%u.%u.%u\n", NIPQUAD(iph->saddr), NIPQUAD(iph->daddr)); in_dev_put(in_dev); goto drop; } in_dev_put(in_dev); } if (ip_options_rcv_srr(skb)) goto drop; } } return skb->dst->input(skb); inhdr_error: IP_INC_STATS_BH(IpInHdrErrors); drop: kfree_skb(skb); return NET_RX_DROP; } /* * Main IP Receive routine. */ int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt) { struct iphdr *iph = skb->nh.iph; /* When the interface is in promisc. mode, drop all the crap * that it receives, do not try to analyse it. */ if (skb->pkt_type == PACKET_OTHERHOST) goto drop; IP_INC_STATS_BH(IpInReceives); if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) goto out; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto inhdr_error; iph = skb->nh.iph; /* * RFC1122: 3.1.2.2 MUST silently discard any IP frame that fails the checksum. * * Is the datagram acceptable? * * 1. Length at least the size of an ip header * 2. Version of 4 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums] * 4. Doesn't have a bogus length */ if (iph->ihl < 5 || iph->version != 4) goto inhdr_error; if (!pskb_may_pull(skb, iph->ihl*4)) goto inhdr_error; if (ip_fast_csum((u8 *)iph, iph->ihl) != 0) goto inhdr_error; { __u32 len = ntohs(iph->tot_len); if (skb->len < len || len < (iph->ihl<<2)) goto inhdr_error; /* Our transport medium may have padded the buffer out. Now we know it * is IP we can trim to the true length of the frame. * Note this now means skb->len holds ntohs(iph->tot_len). */ if (skb->len > len) { __pskb_trim(skb, len); if (skb->ip_summed == CHECKSUM_HW) skb->ip_summed = CHECKSUM_NONE; } } return NF_HOOK(PF_INET, NF_IP_PRE_ROUTING, skb, dev, NULL, ip_rcv_finish); inhdr_error: IP_INC_STATS_BH(IpInHdrErrors); drop: kfree_skb(skb); out: return NET_RX_DROP; } |