Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/* $Id: sparc-stub.c,v 1.27 2000/10/03 07:28:49 anton Exp $
 * sparc-stub.c:  KGDB support for the Linux kernel.
 *
 * Modifications to run under Linux
 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 *
 * This file originally came from the gdb sources, and the
 * copyright notices have been retained below.
 */

/****************************************************************************

		THIS SOFTWARE IS NOT COPYRIGHTED

   HP offers the following for use in the public domain.  HP makes no
   warranty with regard to the software or its performance and the
   user accepts the software "AS IS" with all faults.

   HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
   TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

****************************************************************************/

/****************************************************************************
 *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
 *
 *  Module name: remcom.c $
 *  Revision: 1.34 $
 *  Date: 91/03/09 12:29:49 $
 *  Contributor:     Lake Stevens Instrument Division$
 *
 *  Description:     low level support for gdb debugger. $
 *
 *  Considerations:  only works on target hardware $
 *
 *  Written by:      Glenn Engel $
 *  ModuleState:     Experimental $
 *
 *  NOTES:           See Below $
 *
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 *
 *  This code has been extensively tested on the Fujitsu SPARClite demo board.
 *
 *  To enable debugger support, two things need to happen.  One, a
 *  call to set_debug_traps() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().  Breakpoint()
 *  simulates a breakpoint by executing a trap #1.
 *
 *************
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
 *							   baud rate
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 ****************************************************************************/

#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>

#include <asm/system.h>
#include <asm/signal.h>
#include <asm/oplib.h>
#include <asm/head.h>
#include <asm/traps.h>
#include <asm/vac-ops.h>
#include <asm/kgdb.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
/*
 *
 * external low-level support routines
 */

extern void putDebugChar(char);   /* write a single character      */
extern char getDebugChar(void);   /* read and return a single char */

/*
 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
 * at least NUMREGBYTES*2 are needed for register packets
 */
#define BUFMAX 2048

static int initialized;	/* !0 means we've been initialized */

static const char hexchars[]="0123456789abcdef";

#define NUMREGS 72

/* Number of bytes of registers.  */
#define NUMREGBYTES (NUMREGS * 4)
enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
		 O0, O1, O2, O3, O4, O5, SP, O7,
		 L0, L1, L2, L3, L4, L5, L6, L7,
		 I0, I1, I2, I3, I4, I5, FP, I7,

		 F0, F1, F2, F3, F4, F5, F6, F7,
		 F8, F9, F10, F11, F12, F13, F14, F15,
		 F16, F17, F18, F19, F20, F21, F22, F23,
		 F24, F25, F26, F27, F28, F29, F30, F31,
		 Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };


extern void trap_low(void);  /* In arch/sparc/kernel/entry.S */

unsigned long get_sun4cpte(unsigned long addr)
{
	unsigned long entry;

	__asm__ __volatile__("\n\tlda [%1] %2, %0\n\t" : 
			     "=r" (entry) :
			     "r" (addr), "i" (ASI_PTE));
	return entry;
}

unsigned long get_sun4csegmap(unsigned long addr)
{
	unsigned long entry;

	__asm__ __volatile__("\n\tlduba [%1] %2, %0\n\t" : 
			     "=r" (entry) :
			     "r" (addr), "i" (ASI_SEGMAP));
	return entry;
}

#if 0
/* Have to sort this out. This cannot be done after initialization. */
static void flush_cache_all_nop(void) {}
#endif

/* Place where we save old trap entries for restoration */
struct tt_entry kgdb_savettable[256];
typedef void (*trapfunc_t)(void);

/* Helper routine for manipulation of kgdb_savettable */
static inline void copy_ttentry(struct tt_entry *src, struct tt_entry *dest)
{
	dest->inst_one = src->inst_one;
	dest->inst_two = src->inst_two;
	dest->inst_three = src->inst_three;
	dest->inst_four = src->inst_four;
}

/* Initialize the kgdb_savettable so that debugging can commence */
static void eh_init(void)
{
	int i, flags;

	save_and_cli(flags);
	for(i=0; i < 256; i++)
		copy_ttentry(&sparc_ttable[i], &kgdb_savettable[i]);
	restore_flags(flags);
}

/* Install an exception handler for kgdb */
static void exceptionHandler(int tnum, trapfunc_t trap_entry)
{
	unsigned long te_addr = (unsigned long) trap_entry;
	int flags;

	/* We are dorking with a live trap table, all irqs off */
	save_and_cli(flags);

	/* Make new vector */
	sparc_ttable[tnum].inst_one =
		SPARC_BRANCH((unsigned long) te_addr,
			     (unsigned long) &sparc_ttable[tnum].inst_one);
	sparc_ttable[tnum].inst_two = SPARC_RD_PSR_L0;
	sparc_ttable[tnum].inst_three = SPARC_NOP;
	sparc_ttable[tnum].inst_four = SPARC_NOP;

	restore_flags(flags);
}

/* Convert ch from a hex digit to an int */
static int
hex(unsigned char ch)
{
	if (ch >= 'a' && ch <= 'f')
		return ch-'a'+10;
	if (ch >= '0' && ch <= '9')
		return ch-'0';
	if (ch >= 'A' && ch <= 'F')
		return ch-'A'+10;
	return -1;
}

/* scan for the sequence $<data>#<checksum>     */
static void
getpacket(char *buffer)
{
	unsigned char checksum;
	unsigned char xmitcsum;
	int i;
	int count;
	unsigned char ch;

	do {
		/* wait around for the start character, ignore all other characters */
		while ((ch = (getDebugChar() & 0x7f)) != '$') ;

		checksum = 0;
		xmitcsum = -1;

		count = 0;

		/* now, read until a # or end of buffer is found */
		while (count < BUFMAX) {
			ch = getDebugChar() & 0x7f;
			if (ch == '#')
				break;
			checksum = checksum + ch;
			buffer[count] = ch;
			count = count + 1;
		}

		if (count >= BUFMAX)
			continue;

		buffer[count] = 0;

		if (ch == '#') {
			xmitcsum = hex(getDebugChar() & 0x7f) << 4;
			xmitcsum |= hex(getDebugChar() & 0x7f);
			if (checksum != xmitcsum)
				putDebugChar('-');	/* failed checksum */
			else {
				putDebugChar('+'); /* successful transfer */
				/* if a sequence char is present, reply the ID */
				if (buffer[2] == ':') {
					putDebugChar(buffer[0]);
					putDebugChar(buffer[1]);
					/* remove sequence chars from buffer */
					count = strlen(buffer);
					for (i=3; i <= count; i++)
						buffer[i-3] = buffer[i];
				}
			}
		}
	} while (checksum != xmitcsum);
}

/* send the packet in buffer.  */

static void
putpacket(unsigned char *buffer)
{
	unsigned char checksum;
	int count;
	unsigned char ch, recv;

	/*  $<packet info>#<checksum>. */
	do {
		putDebugChar('$');
		checksum = 0;
		count = 0;

		while ((ch = buffer[count])) {
			putDebugChar(ch);
			checksum += ch;
			count += 1;
		}

		putDebugChar('#');
		putDebugChar(hexchars[checksum >> 4]);
		putDebugChar(hexchars[checksum & 0xf]);
		recv = getDebugChar();
	} while ((recv & 0x7f) != '+');
}

static char remcomInBuffer[BUFMAX];
static char remcomOutBuffer[BUFMAX];

/* Convert the memory pointed to by mem into hex, placing result in buf.
 * Return a pointer to the last char put in buf (null), in case of mem fault,
 * return 0.
 */

static unsigned char *
mem2hex(char *mem, char *buf, int count)
{
	unsigned char ch;

	while (count-- > 0) {
		/* This assembler code is basically:  ch = *mem++;
		 * except that we use the SPARC/Linux exception table
		 * mechanism (see how "fixup" works in kernel_mna_trap_fault)
		 * to arrange for a "return 0" upon a memory fault
		 */
		__asm__(
			"1:	ldub [%0], %1
				inc %0
				.section .fixup,#alloc,#execinstr
				.align 4
			 2:	retl
				 mov 0, %%o0
				.section __ex_table, #alloc
				.align 4
				.word 1b, 2b
				.text"
					: "=r" (mem), "=r" (ch) : "0" (mem));
		*buf++ = hexchars[ch >> 4];
		*buf++ = hexchars[ch & 0xf];
	}

	*buf = 0;
	return buf;
}

/* convert the hex array pointed to by buf into binary to be placed in mem
 * return a pointer to the character AFTER the last byte written.
*/
static char *
hex2mem(char *buf, char *mem, int count)
{
	int i;
	unsigned char ch;

	for (i=0; i<count; i++) {

		ch = hex(*buf++) << 4;
		ch |= hex(*buf++);
		/* Assembler code is   *mem++ = ch;   with return 0 on fault */
		__asm__(
			"1:	stb %1, [%0]
				inc %0
				.section .fixup,#alloc,#execinstr
				.align 4
			 2:	retl
				 mov 0, %%o0
				.section __ex_table, #alloc
				.align 4
				.word 1b, 2b
				.text"
					: "=r" (mem) : "r" (ch) , "0" (mem));
	}
	return mem;
}

/* This table contains the mapping between SPARC hardware trap types, and
   signals, which are primarily what GDB understands.  It also indicates
   which hardware traps we need to commandeer when initializing the stub. */

static struct hard_trap_info
{
  unsigned char tt;		/* Trap type code for SPARC */
  unsigned char signo;		/* Signal that we map this trap into */
} hard_trap_info[] = {
  {SP_TRAP_SBPT, SIGTRAP},      /* ta 1 - Linux/KGDB software breakpoint */
  {0, 0}			/* Must be last */
};

/* Set up exception handlers for tracing and breakpoints */

void
set_debug_traps(void)
{
	struct hard_trap_info *ht;
	unsigned long flags;

	save_and_cli(flags);
#if 0	
/* Have to sort this out. This cannot be done after initialization. */
	BTFIXUPSET_CALL(flush_cache_all, flush_cache_all_nop, BTFIXUPCALL_NOP);
#endif

	/* Initialize our copy of the Linux Sparc trap table */
	eh_init();

	for (ht = hard_trap_info; ht->tt && ht->signo; ht++) {
		/* Only if it doesn't destroy our fault handlers */
		if((ht->tt != SP_TRAP_TFLT) && 
		   (ht->tt != SP_TRAP_DFLT))
			exceptionHandler(ht->tt, trap_low);
	}

	/* In case GDB is started before us, ack any packets (presumably
	 * "$?#xx") sitting there.
	 *
	 * I've found this code causes more problems than it solves,
	 * so that's why it's commented out.  GDB seems to work fine
	 * now starting either before or after the kernel   -bwb
	 */
#if 0
	while((c = getDebugChar()) != '$');
	while((c = getDebugChar()) != '#');
	c = getDebugChar(); /* eat first csum byte */
	c = getDebugChar(); /* eat second csum byte */
	putDebugChar('+'); /* ack it */
#endif

	initialized = 1; /* connect! */
	restore_flags(flags);
}

/* Convert the SPARC hardware trap type code to a unix signal number. */

static int
computeSignal(int tt)
{
	struct hard_trap_info *ht;

	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
		if (ht->tt == tt)
			return ht->signo;

	return SIGHUP;         /* default for things we don't know about */
}

/*
 * While we find nice hex chars, build an int.
 * Return number of chars processed.
 */

static int
hexToInt(char **ptr, int *intValue)
{
	int numChars = 0;
	int hexValue;

	*intValue = 0;

	while (**ptr) {
		hexValue = hex(**ptr);
		if (hexValue < 0)
			break;

		*intValue = (*intValue << 4) | hexValue;
		numChars ++;

		(*ptr)++;
	}

	return (numChars);
}

/*
 * This function does all command processing for interfacing to gdb.  It
 * returns 1 if you should skip the instruction at the trap address, 0
 * otherwise.
 */

extern void breakinst(void);

void
handle_exception (unsigned long *registers)
{
	int tt;       /* Trap type */
	int sigval;
	int addr;
	int length;
	char *ptr;
	unsigned long *sp;

	/* First, we must force all of the windows to be spilled out */

	asm("save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "save %sp, -64, %sp\n\t"
	    "restore\n\t"
	    "restore\n\t"
	    "restore\n\t"
	    "restore\n\t"
	    "restore\n\t"
	    "restore\n\t"
	    "restore\n\t"
	    "restore\n\t");

	lock_kernel();
	if (registers[PC] == (unsigned long)breakinst) {
		/* Skip over breakpoint trap insn */
		registers[PC] = registers[NPC];
		registers[NPC] += 4;
	}

	sp = (unsigned long *)registers[SP];

	tt = (registers[TBR] >> 4) & 0xff;

	/* reply to host that an exception has occurred */
	sigval = computeSignal(tt);
	ptr = remcomOutBuffer;

	*ptr++ = 'T';
	*ptr++ = hexchars[sigval >> 4];
	*ptr++ = hexchars[sigval & 0xf];

	*ptr++ = hexchars[PC >> 4];
	*ptr++ = hexchars[PC & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&registers[PC], ptr, 4);
	*ptr++ = ';';

	*ptr++ = hexchars[FP >> 4];
	*ptr++ = hexchars[FP & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *) (sp + 8 + 6), ptr, 4); /* FP */
	*ptr++ = ';';

	*ptr++ = hexchars[SP >> 4];
	*ptr++ = hexchars[SP & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&sp, ptr, 4);
	*ptr++ = ';';

	*ptr++ = hexchars[NPC >> 4];
	*ptr++ = hexchars[NPC & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&registers[NPC], ptr, 4);
	*ptr++ = ';';

	*ptr++ = hexchars[O7 >> 4];
	*ptr++ = hexchars[O7 & 0xf];
	*ptr++ = ':';
	ptr = mem2hex((char *)&registers[O7], ptr, 4);
	*ptr++ = ';';

	*ptr++ = 0;

	putpacket(remcomOutBuffer);

	/* XXX We may want to add some features dealing with poking the
	 * XXX page tables, the real ones on the srmmu, and what is currently
	 * XXX loaded in the sun4/sun4c tlb at this point in time.  But this
	 * XXX also required hacking to the gdb sources directly...
	 */

	while (1) {
		remcomOutBuffer[0] = 0;

		getpacket(remcomInBuffer);
		switch (remcomInBuffer[0]) {
		case '?':
			remcomOutBuffer[0] = 'S';
			remcomOutBuffer[1] = hexchars[sigval >> 4];
			remcomOutBuffer[2] = hexchars[sigval & 0xf];
			remcomOutBuffer[3] = 0;
			break;

		case 'd':
			/* toggle debug flag */
			break;

		case 'g':		/* return the value of the CPU registers */
		{
			ptr = remcomOutBuffer;
			/* G & O regs */
			ptr = mem2hex((char *)registers, ptr, 16 * 4);
			/* L & I regs */
			ptr = mem2hex((char *) (sp + 0), ptr, 16 * 4);
			/* Floating point */
			memset(ptr, '0', 32 * 8);
			/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
			mem2hex((char *)&registers[Y], (ptr + 32 * 4 * 2), (8 * 4));
		}
			break;

		case 'G':	   /* set the value of the CPU registers - return OK */
		{
			unsigned long *newsp, psr;

			psr = registers[PSR];

			ptr = &remcomInBuffer[1];
			/* G & O regs */
			hex2mem(ptr, (char *)registers, 16 * 4);
			/* L & I regs */
			hex2mem(ptr + 16 * 4 * 2, (char *) (sp + 0), 16 * 4);
			/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
			hex2mem(ptr + 64 * 4 * 2, (char *)&registers[Y], 8 * 4);

			/* See if the stack pointer has moved.  If so,
			 * then copy the saved locals and ins to the
			 * new location.  This keeps the window
			 * overflow and underflow routines happy.
			 */

			newsp = (unsigned long *)registers[SP];
			if (sp != newsp)
				sp = memcpy(newsp, sp, 16 * 4);

			/* Don't allow CWP to be modified. */

			if (psr != registers[PSR])
				registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);

			strcpy(remcomOutBuffer,"OK");
		}
			break;

		case 'm':	  /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
			/* Try to read %x,%x.  */

			ptr = &remcomInBuffer[1];

			if (hexToInt(&ptr, &addr)
			    && *ptr++ == ','
			    && hexToInt(&ptr, &length))	{
				if (mem2hex((char *)addr, remcomOutBuffer, length))
					break;

				strcpy (remcomOutBuffer, "E03");
			} else {
				strcpy(remcomOutBuffer,"E01");
			}
			break;

		case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
			/* Try to read '%x,%x:'.  */

			ptr = &remcomInBuffer[1];

			if (hexToInt(&ptr, &addr)
			    && *ptr++ == ','
			    && hexToInt(&ptr, &length)
			    && *ptr++ == ':') {
				if (hex2mem(ptr, (char *)addr, length)) {
					strcpy(remcomOutBuffer, "OK");
				} else {
					strcpy(remcomOutBuffer, "E03");
				}
			} else {
				strcpy(remcomOutBuffer, "E02");
			}
			break;

		case 'c':    /* cAA..AA    Continue at address AA..AA(optional) */
			/* try to read optional parameter, pc unchanged if no parm */

			ptr = &remcomInBuffer[1];
			if (hexToInt(&ptr, &addr)) {
				registers[PC] = addr;
				registers[NPC] = addr + 4;
			}

/* Need to flush the instruction cache here, as we may have deposited a
 * breakpoint, and the icache probably has no way of knowing that a data ref to
 * some location may have changed something that is in the instruction cache.
 */
			flush_cache_all();
			unlock_kernel();
			return;

			/* kill the program */
		case 'k' :		/* do nothing */
			break;
		case 'r':		/* Reset */
			asm ("call 0\n\t"
			     "nop\n\t");
			break;
		}			/* switch */

		/* reply to the request */
		putpacket(remcomOutBuffer);
	} /* while(1) */
}

/* This function will generate a breakpoint exception.  It is used at the
   beginning of a program to sync up with a debugger and can be used
   otherwise as a quick means to stop program execution and "break" into
   the debugger. */

void
breakpoint(void)
{
	if (!initialized)
		return;

	/* Again, watch those c-prefixes for ELF kernels */
#if defined(__svr4__) || defined(__ELF__)
	asm("	.globl breakinst

	     breakinst: ta 1
            ");
#else
	asm("	.globl _breakinst

	     _breakinst: ta 1
            ");
#endif
}