/*
* linux/fs/ufs/inode.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*
* from
*
* linux/fs/ext2/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/ufs_fs.h>
#include <linux/sched.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/locks.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include "swab.h"
#include "util.h"
#undef UFS_INODE_DEBUG
#undef UFS_INODE_DEBUG_MORE
#ifdef UFS_INODE_DEBUG
#define UFSD(x) printk("(%s, %d), %s: ", __FILE__, __LINE__, __FUNCTION__); printk x;
#else
#define UFSD(x)
#endif
#ifdef UFS_INODE_DEBUG_MORE
static void ufs_print_inode(struct inode * inode)
{
unsigned swab = inode->i_sb->u.ufs_sb.s_swab;
printk("ino %lu mode 0%6.6o nlink %d uid %d gid %d"
" size %lu blocks %lu\n",
inode->i_ino, inode->i_mode, inode->i_nlink,
inode->i_uid, inode->i_gid,
inode->i_size, inode->i_blocks);
printk(" db <%u %u %u %u %u %u %u %u %u %u %u %u>\n",
SWAB32(inode->u.ufs_i.i_u1.i_data[0]),
SWAB32(inode->u.ufs_i.i_u1.i_data[1]),
SWAB32(inode->u.ufs_i.i_u1.i_data[2]),
SWAB32(inode->u.ufs_i.i_u1.i_data[3]),
SWAB32(inode->u.ufs_i.i_u1.i_data[4]),
SWAB32(inode->u.ufs_i.i_u1.i_data[5]),
SWAB32(inode->u.ufs_i.i_u1.i_data[6]),
SWAB32(inode->u.ufs_i.i_u1.i_data[7]),
SWAB32(inode->u.ufs_i.i_u1.i_data[8]),
SWAB32(inode->u.ufs_i.i_u1.i_data[9]),
SWAB32(inode->u.ufs_i.i_u1.i_data[10]),
SWAB32(inode->u.ufs_i.i_u1.i_data[11]));
printk(" gen %u ib <%u %u %u>\n",
inode->u.ufs_i.i_gen,
SWAB32(inode->u.ufs_i.i_u1.i_data[UFS_IND_BLOCK]),
SWAB32(inode->u.ufs_i.i_u1.i_data[UFS_DIND_BLOCK]),
SWAB32(inode->u.ufs_i.i_u1.i_data[UFS_TIND_BLOCK]));
}
#endif
#define ufs_inode_bmap(inode, nr) \
(SWAB32((inode)->u.ufs_i.i_u1.i_data[(nr) >> uspi->s_fpbshift]) + ((nr) & uspi->s_fpbmask))
static inline unsigned int ufs_block_bmap (struct buffer_head * bh, unsigned nr,
struct ufs_sb_private_info * uspi, unsigned swab)
{
unsigned int tmp;
UFSD(("ENTER, nr %u\n", nr))
if (!bh)
return 0;
tmp = SWAB32(((u32 *) bh->b_data)[nr >> uspi->s_fpbshift]) + (nr & uspi->s_fpbmask);
brelse (bh);
UFSD(("EXIT, result %u\n", tmp))
return tmp;
}
int ufs_frag_map(struct inode *inode, int frag)
{
struct super_block *sb;
struct ufs_sb_private_info *uspi;
unsigned int swab;
int i, ret;
ret = 0;
lock_kernel();
sb = inode->i_sb;
uspi = sb->u.ufs_sb.s_uspi;
swab = sb->u.ufs_sb.s_swab;
if (frag < 0) {
ufs_warning(sb, "ufs_frag_map", "frag < 0");
goto out;
}
if (frag >=
((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
<< uspi->s_fpbshift)) {
ufs_warning(sb, "ufs_frag_map", "frag > big");
goto out;
}
if (frag < UFS_NDIR_FRAGMENT) {
ret = uspi->s_sbbase + ufs_inode_bmap(inode, frag);
goto out;
}
frag -= UFS_NDIR_FRAGMENT;
if (frag < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
i = ufs_inode_bmap(inode,
UFS_IND_FRAGMENT + (frag >> uspi->s_apbshift));
if (!i)
goto out;
ret = (uspi->s_sbbase +
ufs_block_bmap(bread(sb->s_dev, uspi->s_sbbase + i,
sb->s_blocksize),
frag & uspi->s_apbmask, uspi, swab));
goto out;
}
frag -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
if (frag < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
i = ufs_inode_bmap (inode,
UFS_DIND_FRAGMENT + (frag >> uspi->s_2apbshift));
if (!i)
goto out;
i = ufs_block_bmap(bread(sb->s_dev, uspi->s_sbbase + i,
sb->s_blocksize),
(frag >> uspi->s_apbshift) & uspi->s_apbmask,
uspi, swab);
if (!i)
goto out;
ret = (uspi->s_sbbase +
ufs_block_bmap(bread(sb->s_dev, uspi->s_sbbase + i,
sb->s_blocksize),
(frag & uspi->s_apbmask), uspi, swab));
goto out;
}
frag -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
i = ufs_inode_bmap(inode,
UFS_TIND_FRAGMENT + (frag >> uspi->s_3apbshift));
if (!i)
goto out;
i = ufs_block_bmap(bread(sb->s_dev, uspi->s_sbbase + i, sb->s_blocksize),
(frag >> uspi->s_2apbshift) & uspi->s_apbmask,
uspi, swab);
if (!i)
goto out;
i = ufs_block_bmap(bread(sb->s_dev, uspi->s_sbbase + i, sb->s_blocksize),
(frag >> uspi->s_apbshift) & uspi->s_apbmask,
uspi, swab);
if (!i)
goto out;
ret = (uspi->s_sbbase +
ufs_block_bmap(bread(sb->s_dev, uspi->s_sbbase + i, sb->s_blocksize),
(frag & uspi->s_apbmask), uspi, swab));
out:
unlock_kernel();
return ret;
}
static struct buffer_head * ufs_inode_getfrag (struct inode *inode,
unsigned int fragment, unsigned int new_fragment,
unsigned int required, int *err, int metadata, long *phys, int *new)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * result;
unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
unsigned tmp, goal;
u32 * p, * p2;
unsigned int swab;
UFSD(("ENTER, ino %lu, fragment %u, new_fragment %u, required %u\n",
inode->i_ino, fragment, new_fragment, required))
sb = inode->i_sb;
swab = sb->u.ufs_sb.s_swab;
uspi = sb->u.ufs_sb.s_uspi;
block = ufs_fragstoblks (fragment);
blockoff = ufs_fragnum (fragment);
p = inode->u.ufs_i.i_u1.i_data + block;
goal = 0;
repeat:
tmp = SWAB32(*p);
lastfrag = inode->u.ufs_i.i_lastfrag;
if (tmp && fragment < lastfrag) {
if (metadata) {
result = getblk (sb->s_dev, uspi->s_sbbase + tmp + blockoff,
sb->s_blocksize);
if (tmp == SWAB32(*p)) {
UFSD(("EXIT, result %u\n", tmp + blockoff))
return result;
}
brelse (result);
goto repeat;
} else {
*phys = tmp;
return NULL;
}
}
lastblock = ufs_fragstoblks (lastfrag);
lastblockoff = ufs_fragnum (lastfrag);
/*
* We will extend file into new block beyond last allocated block
*/
if (lastblock < block) {
/*
* We must reallocate last allocated block
*/
if (lastblockoff) {
p2 = inode->u.ufs_i.i_u1.i_data + lastblock;
tmp = ufs_new_fragments (inode, p2, lastfrag,
SWAB32(*p2), uspi->s_fpb - lastblockoff, err);
if (!tmp) {
if (lastfrag != inode->u.ufs_i.i_lastfrag)
goto repeat;
else
return NULL;
}
lastfrag = inode->u.ufs_i.i_lastfrag;
}
goal = SWAB32(inode->u.ufs_i.i_u1.i_data[lastblock]) + uspi->s_fpb;
tmp = ufs_new_fragments (inode, p, fragment - blockoff,
goal, required + blockoff, err);
}
/*
* We will extend last allocated block
*/
else if (lastblock == block) {
tmp = ufs_new_fragments (inode, p, fragment - (blockoff - lastblockoff),
SWAB32(*p), required + (blockoff - lastblockoff), err);
}
/*
* We will allocate new block before last allocated block
*/
else /* (lastblock > block) */ {
if (lastblock && (tmp = SWAB32(inode->u.ufs_i.i_u1.i_data[lastblock-1])))
goal = tmp + uspi->s_fpb;
tmp = ufs_new_fragments (inode, p, fragment - blockoff,
goal, uspi->s_fpb, err);
}
if (!tmp) {
if ((!blockoff && SWAB32(*p)) ||
(blockoff && lastfrag != inode->u.ufs_i.i_lastfrag))
goto repeat;
*err = -ENOSPC;
return NULL;
}
/* The nullification of framgents done in ufs/balloc.c is
* something I don't have the stomache to move into here right
* now. -DaveM
*/
if (metadata) {
result = getblk (inode->i_dev, tmp + blockoff, sb->s_blocksize);
} else {
*phys = tmp;
result = NULL;
*err = 0;
*new = 1;
}
inode->i_ctime = CURRENT_TIME;
if (IS_SYNC(inode))
ufs_sync_inode (inode);
mark_inode_dirty(inode);
UFSD(("EXIT, result %u\n", tmp + blockoff))
return result;
}
static struct buffer_head * ufs_block_getfrag (struct inode *inode,
struct buffer_head *bh, unsigned int fragment, unsigned int new_fragment,
unsigned int blocksize, int * err, int metadata, long *phys, int *new)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * result;
unsigned tmp, goal, block, blockoff;
u32 * p;
unsigned int swab;
sb = inode->i_sb;
swab = sb->u.ufs_sb.s_swab;
uspi = sb->u.ufs_sb.s_uspi;
block = ufs_fragstoblks (fragment);
blockoff = ufs_fragnum (fragment);
UFSD(("ENTER, ino %lu, fragment %u, new_fragment %u\n", inode->i_ino, fragment, new_fragment))
result = NULL;
if (!bh)
goto out;
if (!buffer_uptodate(bh)) {
ll_rw_block (READ, 1, &bh);
wait_on_buffer (bh);
if (!buffer_uptodate(bh))
goto out;
}
p = (u32 *) bh->b_data + block;
repeat:
tmp = SWAB32(*p);
if (tmp) {
if (metadata) {
result = getblk (bh->b_dev, uspi->s_sbbase + tmp + blockoff,
sb->s_blocksize);
if (tmp == SWAB32(*p))
goto out;
brelse (result);
goto repeat;
} else {
*phys = tmp;
goto out;
}
}
if (block && (tmp = SWAB32(((u32*)bh->b_data)[block-1]) + uspi->s_fpb))
goal = tmp + uspi->s_fpb;
else
goal = bh->b_blocknr + uspi->s_fpb;
tmp = ufs_new_fragments (inode, p, ufs_blknum(new_fragment), goal, uspi->s_fpb, err);
if (!tmp) {
if (SWAB32(*p))
goto repeat;
goto out;
}
/* The nullification of framgents done in ufs/balloc.c is
* something I don't have the stomache to move into here right
* now. -DaveM
*/
if (metadata) {
result = getblk (bh->b_dev, tmp + blockoff, sb->s_blocksize);
} else {
*phys = tmp;
*new = 1;
}
mark_buffer_dirty(bh);
if (IS_SYNC(inode)) {
ll_rw_block (WRITE, 1, &bh);
wait_on_buffer (bh);
}
inode->i_ctime = CURRENT_TIME;
mark_inode_dirty(inode);
out:
brelse (bh);
UFSD(("EXIT, result %u\n", tmp + blockoff))
return result;
}
static int ufs_getfrag_block (struct inode *inode, long fragment, struct buffer_head *bh_result, int create)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * bh;
unsigned int swab;
int ret, err, new;
unsigned long ptr, phys;
sb = inode->i_sb;
uspi = sb->u.ufs_sb.s_uspi;
swab = sb->u.ufs_sb.s_swab;
if (!create) {
phys = ufs_frag_map(inode, fragment);
if (phys) {
bh_result->b_dev = inode->i_dev;
bh_result->b_blocknr = phys;
bh_result->b_state |= (1UL << BH_Mapped);
}
return 0;
}
err = -EIO;
new = 0;
ret = 0;
bh = NULL;
lock_kernel();
UFSD(("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment))
if (fragment < 0)
goto abort_negative;
if (fragment >
((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
<< uspi->s_fpbshift))
goto abort_too_big;
err = 0;
ptr = fragment;
/*
* ok, these macros clean the logic up a bit and make
* it much more readable:
*/
#define GET_INODE_DATABLOCK(x) \
ufs_inode_getfrag(inode, x, fragment, 1, &err, 0, &phys, &new)
#define GET_INODE_PTR(x) \
ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, 1, NULL, NULL)
#define GET_INDIRECT_DATABLOCK(x) \
ufs_block_getfrag(inode, bh, x, fragment, sb->s_blocksize, \
&err, 0, &phys, &new);
#define GET_INDIRECT_PTR(x) \
ufs_block_getfrag(inode, bh, x, fragment, sb->s_blocksize, \
&err, 1, NULL, NULL);
if (ptr < UFS_NDIR_FRAGMENT) {
bh = GET_INODE_DATABLOCK(ptr);
goto out;
}
ptr -= UFS_NDIR_FRAGMENT;
if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
goto get_indirect;
}
ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
goto get_double;
}
ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
get_double:
bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
get_indirect:
bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
#undef GET_INODE_DATABLOCK
#undef GET_INODE_PTR
#undef GET_INDIRECT_DATABLOCK
#undef GET_INDIRECT_PTR
out:
if (err)
goto abort;
bh_result->b_dev = inode->i_dev;
bh_result->b_blocknr = phys;
bh_result->b_state |= (1UL << BH_Mapped);
if (new)
bh_result->b_state |= (1UL << BH_New);
abort:
unlock_kernel();
return err;
abort_negative:
ufs_warning(sb, "ufs_get_block", "block < 0");
goto abort;
abort_too_big:
ufs_warning(sb, "ufs_get_block", "block > big");
goto abort;
}
struct buffer_head *ufs_getfrag(struct inode *inode, unsigned int fragment,
int create, int *err)
{
struct buffer_head dummy;
int error;
dummy.b_state = 0;
dummy.b_blocknr = -1000;
error = ufs_getfrag_block(inode, fragment, &dummy, create);
*err = error;
if (!error && buffer_mapped(&dummy)) {
struct buffer_head *bh;
bh = getblk(dummy.b_dev, dummy.b_blocknr, inode->i_sb->s_blocksize);
if (buffer_new(&dummy)) {
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
mark_buffer_uptodate(bh, 1);
mark_buffer_dirty(bh);
}
return bh;
}
return NULL;
}
struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
int create, int * err)
{
struct buffer_head * bh;
UFSD(("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment))
bh = ufs_getfrag (inode, fragment, create, err);
if (!bh || buffer_uptodate(bh))
return bh;
ll_rw_block (READ, 1, &bh);
wait_on_buffer (bh);
if (buffer_uptodate(bh))
return bh;
brelse (bh);
*err = -EIO;
return NULL;
}
static int ufs_writepage(struct page *page)
{
return block_write_full_page(page,ufs_getfrag_block);
}
static int ufs_readpage(struct file *file, struct page *page)
{
return block_read_full_page(page,ufs_getfrag_block);
}
static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
{
return block_prepare_write(page,from,to,ufs_getfrag_block);
}
static int ufs_bmap(struct address_space *mapping, long block)
{
return generic_block_bmap(mapping,block,ufs_getfrag_block);
}
struct address_space_operations ufs_aops = {
readpage: ufs_readpage,
writepage: ufs_writepage,
sync_page: block_sync_page,
prepare_write: ufs_prepare_write,
commit_write: generic_commit_write,
bmap: ufs_bmap
};
void ufs_read_inode (struct inode * inode)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct ufs_inode * ufs_inode;
struct buffer_head * bh;
unsigned i;
unsigned flags, swab;
UFSD(("ENTER, ino %lu\n", inode->i_ino))
sb = inode->i_sb;
uspi = sb->u.ufs_sb.s_uspi;
flags = sb->u.ufs_sb.s_flags;
swab = sb->u.ufs_sb.s_swab;
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
return;
}
bh = bread (sb->s_dev, uspi->s_sbbase + ufs_inotofsba(inode->i_ino), sb->s_blocksize);
if (!bh) {
ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
return;
}
ufs_inode = (struct ufs_inode *) (bh->b_data + sizeof(struct ufs_inode) * ufs_inotofsbo(inode->i_ino));
/*
* Copy data to the in-core inode.
*/
inode->i_mode = SWAB16(ufs_inode->ui_mode);
inode->i_nlink = SWAB16(ufs_inode->ui_nlink);
if (inode->i_nlink == 0)
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
inode->i_uid = ufs_get_inode_uid(ufs_inode);
inode->i_gid = ufs_get_inode_gid(ufs_inode);
/*
* Linux i_size can be 32 on some architectures. We will mark
* big files as read only and let user access first 32 bits.
*/
inode->u.ufs_i.i_size = SWAB64(ufs_inode->ui_size);
inode->i_size = (off_t) inode->u.ufs_i.i_size;
if (sizeof(off_t) == 4 && (inode->u.ufs_i.i_size >> 32))
inode->i_size = (__u32)-1;
inode->i_atime = SWAB32(ufs_inode->ui_atime.tv_sec);
inode->i_ctime = SWAB32(ufs_inode->ui_ctime.tv_sec);
inode->i_mtime = SWAB32(ufs_inode->ui_mtime.tv_sec);
inode->i_blocks = SWAB32(ufs_inode->ui_blocks);
inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat) */
inode->i_version = ++event;
inode->u.ufs_i.i_flags = SWAB32(ufs_inode->ui_flags);
inode->u.ufs_i.i_gen = SWAB32(ufs_inode->ui_gen);
inode->u.ufs_i.i_shadow = SWAB32(ufs_inode->ui_u3.ui_sun.ui_shadow);
inode->u.ufs_i.i_oeftflag = SWAB32(ufs_inode->ui_u3.ui_sun.ui_oeftflag);
inode->u.ufs_i.i_lastfrag = (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
;
else if (inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
inode->u.ufs_i.i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
}
else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
inode->u.ufs_i.i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
}
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ufs_file_inode_operations;
inode->i_fop = &ufs_file_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ufs_dir_inode_operations;
inode->i_fop = &ufs_dir_operations;
} else if (S_ISLNK(inode->i_mode)) {
if (!inode->i_blocks)
inode->i_op = &ufs_fast_symlink_inode_operations;
else {
inode->i_op = &page_symlink_inode_operations;
inode->i_mapping->a_ops = &ufs_aops;
}
} else
init_special_inode(inode, inode->i_mode,
SWAB32(ufs_inode->ui_u2.ui_addr.ui_db[0]));
brelse (bh);
#ifdef UFS_INODE_DEBUG_MORE
ufs_print_inode (inode);
#endif
UFSD(("EXIT\n"))
}
static int ufs_update_inode(struct inode * inode, int do_sync)
{
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * bh;
struct ufs_inode * ufs_inode;
unsigned i;
unsigned flags, swab;
UFSD(("ENTER, ino %lu\n", inode->i_ino))
sb = inode->i_sb;
uspi = sb->u.ufs_sb.s_uspi;
flags = sb->u.ufs_sb.s_flags;
swab = sb->u.ufs_sb.s_swab;
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
return -1;
}
bh = bread (sb->s_dev, ufs_inotofsba(inode->i_ino), sb->s_blocksize);
if (!bh) {
ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
return -1;
}
ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
ufs_inode->ui_mode = SWAB16(inode->i_mode);
ufs_inode->ui_nlink = SWAB16(inode->i_nlink);
ufs_set_inode_uid (ufs_inode, inode->i_uid);
ufs_set_inode_gid (ufs_inode, inode->i_gid);
ufs_inode->ui_size = SWAB64((u64)inode->i_size);
ufs_inode->ui_atime.tv_sec = SWAB32(inode->i_atime);
ufs_inode->ui_atime.tv_usec = SWAB32(0);
ufs_inode->ui_ctime.tv_sec = SWAB32(inode->i_ctime);
ufs_inode->ui_ctime.tv_usec = SWAB32(0);
ufs_inode->ui_mtime.tv_sec = SWAB32(inode->i_mtime);
ufs_inode->ui_mtime.tv_usec = SWAB32(0);
ufs_inode->ui_blocks = SWAB32(inode->i_blocks);
ufs_inode->ui_flags = SWAB32(inode->u.ufs_i.i_flags);
ufs_inode->ui_gen = SWAB32(inode->u.ufs_i.i_gen);
if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
ufs_inode->ui_u3.ui_sun.ui_shadow = SWAB32(inode->u.ufs_i.i_shadow);
ufs_inode->ui_u3.ui_sun.ui_oeftflag = SWAB32(inode->u.ufs_i.i_oeftflag);
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
ufs_inode->ui_u2.ui_addr.ui_db[0] = SWAB32(kdev_t_to_nr(inode->i_rdev));
else if (inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufs_inode->ui_u2.ui_addr.ui_db[i] = inode->u.ufs_i.i_u1.i_data[i];
}
else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufs_inode->ui_u2.ui_symlink[i] = inode->u.ufs_i.i_u1.i_symlink[i];
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs_inode));
mark_buffer_dirty(bh);
if (do_sync) {
ll_rw_block (WRITE, 1, &bh);
wait_on_buffer (bh);
}
brelse (bh);
UFSD(("EXIT\n"))
return 0;
}
void ufs_write_inode (struct inode * inode, int wait)
{
lock_kernel();
ufs_update_inode (inode, wait);
unlock_kernel();
}
int ufs_sync_inode (struct inode *inode)
{
return ufs_update_inode (inode, 1);
}
void ufs_delete_inode (struct inode * inode)
{
/*inode->u.ufs_i.i_dtime = CURRENT_TIME;*/
lock_kernel();
mark_inode_dirty(inode);
ufs_update_inode(inode, IS_SYNC(inode));
inode->i_size = 0;
if (inode->i_blocks)
ufs_truncate (inode);
ufs_free_inode (inode);
unlock_kernel();
}