Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/* $Id: pci_iommu.c,v 1.16 2001/10/09 02:24:33 davem Exp $
 * pci_iommu.c: UltraSparc PCI controller IOM/STC support.
 *
 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
 * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>

#include <asm/pbm.h>

#include "iommu_common.h"

#define PCI_STC_CTXMATCH_ADDR(STC, CTX)	\
	((STC)->strbuf_ctxmatch_base + ((CTX) << 3))

/* Accessing IOMMU and Streaming Buffer registers.
 * REG parameter is a physical address.  All registers
 * are 64-bits in size.
 */
#define pci_iommu_read(__reg) \
({	u64 __ret; \
	__asm__ __volatile__("ldxa [%1] %2, %0" \
			     : "=r" (__ret) \
			     : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
			     : "memory"); \
	__ret; \
})
#define pci_iommu_write(__reg, __val) \
	__asm__ __volatile__("stxa %0, [%1] %2" \
			     : /* no outputs */ \
			     : "r" (__val), "r" (__reg), \
			       "i" (ASI_PHYS_BYPASS_EC_E))

/* Must be invoked under the IOMMU lock. */
static void __iommu_flushall(struct pci_iommu *iommu)
{
	unsigned long tag;
	int entry;

	tag = iommu->iommu_flush + (0xa580UL - 0x0210UL);
	for (entry = 0; entry < 16; entry++) {
		pci_iommu_write(tag, 0);
		tag += 8;
	}

	/* Ensure completion of previous PIO writes. */
	(void) pci_iommu_read(iommu->write_complete_reg);

	/* Now update everyone's flush point. */
	for (entry = 0; entry < PBM_NCLUSTERS; entry++) {
		iommu->alloc_info[entry].flush =
			iommu->alloc_info[entry].next;
	}
}

static iopte_t *alloc_streaming_cluster(struct pci_iommu *iommu, unsigned long npages)
{
	iopte_t *iopte, *limit, *first;
	unsigned long cnum, ent, flush_point;

	cnum = 0;
	while ((1UL << cnum) < npages)
		cnum++;
	iopte  = (iommu->page_table +
		  (cnum << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));

	if (cnum == 0)
		limit = (iommu->page_table +
			 iommu->lowest_consistent_map);
	else
		limit = (iopte +
			 (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));

	iopte += ((ent = iommu->alloc_info[cnum].next) << cnum);
	flush_point = iommu->alloc_info[cnum].flush;
	
	first = iopte;
	for (;;) {
		if (iopte_val(*iopte) == 0UL) {
			if ((iopte + (1 << cnum)) >= limit)
				ent = 0;
			else
				ent = ent + 1;
			iommu->alloc_info[cnum].next = ent;
			if (ent == flush_point)
				__iommu_flushall(iommu);
			break;
		}
		iopte += (1 << cnum);
		ent++;
		if (iopte >= limit) {
			iopte = (iommu->page_table +
				 (cnum <<
				  (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));
			ent = 0;
		}
		if (ent == flush_point)
			__iommu_flushall(iommu);
		if (iopte == first)
			goto bad;
	}

	/* I've got your streaming cluster right here buddy boy... */
	return iopte;

bad:
	printk(KERN_EMERG "pci_iommu: alloc_streaming_cluster of npages(%ld) failed!\n",
	       npages);
	return NULL;
}

static void free_streaming_cluster(struct pci_iommu *iommu, dma_addr_t base,
				   unsigned long npages, unsigned long ctx)
{
	unsigned long cnum, ent;

	cnum = 0;
	while ((1UL << cnum) < npages)
		cnum++;

	ent = (base << (32 - IO_PAGE_SHIFT + PBM_LOGCLUSTERS - iommu->page_table_sz_bits))
		>> (32 + PBM_LOGCLUSTERS + cnum - iommu->page_table_sz_bits);

	/* If the global flush might not have caught this entry,
	 * adjust the flush point such that we will flush before
	 * ever trying to reuse it.
	 */
#define between(X,Y,Z)	(((Z) - (Y)) >= ((X) - (Y)))
	if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush))
		iommu->alloc_info[cnum].flush = ent;
#undef between
}

/* We allocate consistent mappings from the end of cluster zero. */
static iopte_t *alloc_consistent_cluster(struct pci_iommu *iommu, unsigned long npages)
{
	iopte_t *iopte;

	iopte = iommu->page_table + (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS));
	while (iopte > iommu->page_table) {
		iopte--;
		if (!(iopte_val(*iopte) & IOPTE_VALID)) {
			unsigned long tmp = npages;

			while (--tmp) {
				iopte--;
				if (iopte_val(*iopte) & IOPTE_VALID)
					break;
			}
			if (tmp == 0) {
				u32 entry = (iopte - iommu->page_table);

				if (entry < iommu->lowest_consistent_map)
					iommu->lowest_consistent_map = entry;
				return iopte;
			}
		}
	}
	return NULL;
}

#define IOPTE_CONSISTENT(CTX) \
	(IOPTE_VALID | IOPTE_CACHE | \
	 (((CTX) << 47) & IOPTE_CONTEXT))

#define IOPTE_STREAMING(CTX) \
	(IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)

#define IOPTE_INVALID	0UL

/* Allocate and map kernel buffer of size SIZE using consistent mode
 * DMA for PCI device PDEV.  Return non-NULL cpu-side address if
 * successful and set *DMA_ADDRP to the PCI side dma address.
 */
void *pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	iopte_t *iopte;
	unsigned long flags, order, first_page, ctx;
	void *ret;
	int npages;

	size = IO_PAGE_ALIGN(size);
	order = get_order(size);
	if (order >= 10)
		return NULL;

	first_page = __get_free_pages(GFP_ATOMIC, order);
	if (first_page == 0UL)
		return NULL;
	memset((char *)first_page, 0, PAGE_SIZE << order);

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;

	spin_lock_irqsave(&iommu->lock, flags);
	iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT);
	if (iopte == NULL) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		free_pages(first_page, order);
		return NULL;
	}

	*dma_addrp = (iommu->page_table_map_base +
		      ((iopte - iommu->page_table) << IO_PAGE_SHIFT));
	ret = (void *) first_page;
	npages = size >> IO_PAGE_SHIFT;
	ctx = 0;
	if (iommu->iommu_ctxflush)
		ctx = iommu->iommu_cur_ctx++;
	first_page = __pa(first_page);
	while (npages--) {
		iopte_val(*iopte) = (IOPTE_CONSISTENT(ctx) |
				     IOPTE_WRITE |
				     (first_page & IOPTE_PAGE));
		iopte++;
		first_page += IO_PAGE_SIZE;
	}

	{
		int i;
		u32 daddr = *dma_addrp;

		npages = size >> IO_PAGE_SHIFT;
		for (i = 0; i < npages; i++) {
			pci_iommu_write(iommu->iommu_flush, daddr);
			daddr += IO_PAGE_SIZE;
		}
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

/* Free and unmap a consistent DMA translation. */
void pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	iopte_t *iopte;
	unsigned long flags, order, npages, i, ctx;

	npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	iopte = iommu->page_table +
		((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);

	spin_lock_irqsave(&iommu->lock, flags);

	if ((iopte - iommu->page_table) ==
	    iommu->lowest_consistent_map) {
		iopte_t *walk = iopte + npages;
		iopte_t *limit;

		limit = (iommu->page_table +
			 (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)));
		while (walk < limit) {
			if (iopte_val(*walk) != IOPTE_INVALID)
				break;
			walk++;
		}
		iommu->lowest_consistent_map =
			(walk - iommu->page_table);
	}

	/* Data for consistent mappings cannot enter the streaming
	 * buffers, so we only need to update the TSB.  We flush
	 * the IOMMU here as well to prevent conflicts with the
	 * streaming mapping deferred tlb flush scheme.
	 */

	ctx = 0;
	if (iommu->iommu_ctxflush)
		ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;

	for (i = 0; i < npages; i++, iopte++)
		iopte_val(*iopte) = IOPTE_INVALID;

	if (iommu->iommu_ctxflush) {
		pci_iommu_write(iommu->iommu_ctxflush, ctx);
	} else {
		for (i = 0; i < npages; i++) {
			u32 daddr = dvma + (i << IO_PAGE_SHIFT);

			pci_iommu_write(iommu->iommu_flush, daddr);
		}
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	order = get_order(size);
	if (order < 10)
		free_pages((unsigned long)cpu, order);
}

/* Map a single buffer at PTR of SZ bytes for PCI DMA
 * in streaming mode.
 */
dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	struct pci_strbuf *strbuf;
	iopte_t *base;
	unsigned long flags, npages, oaddr;
	unsigned long i, base_paddr, ctx;
	u32 bus_addr, ret;
	unsigned long iopte_protection;

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	strbuf = &pcp->pbm->stc;

	if (direction == PCI_DMA_NONE)
		BUG();

	oaddr = (unsigned long)ptr;
	npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
	npages >>= IO_PAGE_SHIFT;

	spin_lock_irqsave(&iommu->lock, flags);

	base = alloc_streaming_cluster(iommu, npages);
	if (base == NULL)
		goto bad;
	bus_addr = (iommu->page_table_map_base +
		    ((base - iommu->page_table) << IO_PAGE_SHIFT));
	ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
	base_paddr = __pa(oaddr & IO_PAGE_MASK);
	ctx = 0;
	if (iommu->iommu_ctxflush)
		ctx = iommu->iommu_cur_ctx++;
	if (strbuf->strbuf_enabled)
		iopte_protection = IOPTE_STREAMING(ctx);
	else
		iopte_protection = IOPTE_CONSISTENT(ctx);
	if (direction != PCI_DMA_TODEVICE)
		iopte_protection |= IOPTE_WRITE;

	for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
		iopte_val(*base) = iopte_protection | base_paddr;

	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;

bad:
	spin_unlock_irqrestore(&iommu->lock, flags);
	BUG();
	return 0;
}

/* Unmap a single streaming mode DMA translation. */
void pci_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	struct pci_strbuf *strbuf;
	iopte_t *base;
	unsigned long flags, npages, i, ctx;

	if (direction == PCI_DMA_NONE)
		BUG();

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	strbuf = &pcp->pbm->stc;

	npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
	npages >>= IO_PAGE_SHIFT;
	base = iommu->page_table +
		((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
#ifdef DEBUG_PCI_IOMMU
	if (iopte_val(*base) == IOPTE_INVALID)
		printk("pci_unmap_single called on non-mapped region %08x,%08x from %016lx\n",
		       bus_addr, sz, __builtin_return_address(0));
#endif
	bus_addr &= IO_PAGE_MASK;

	spin_lock_irqsave(&iommu->lock, flags);

	/* Record the context, if any. */
	ctx = 0;
	if (iommu->iommu_ctxflush)
		ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;

	/* Step 1: Kick data out of streaming buffers if necessary. */
	if (strbuf->strbuf_enabled) {
		u32 vaddr = bus_addr;

		PCI_STC_FLUSHFLAG_INIT(strbuf);
		if (strbuf->strbuf_ctxflush &&
		    iommu->iommu_ctxflush) {
			unsigned long matchreg, flushreg;

			flushreg = strbuf->strbuf_ctxflush;
			matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx);
			do {
				pci_iommu_write(flushreg, ctx);
			} while(((long)pci_iommu_read(matchreg)) < 0L);
		} else {
			for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
				pci_iommu_write(strbuf->strbuf_pflush, vaddr);
		}

		pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
		(void) pci_iommu_read(iommu->write_complete_reg);
		while (!PCI_STC_FLUSHFLAG_SET(strbuf))
			membar("#LoadLoad");
	}

	/* Step 2: Clear out first TSB entry. */
	iopte_val(*base) = IOPTE_INVALID;

	free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base,
			       npages, ctx);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

#define SG_ENT_PHYS_ADDRESS(SG)	\
	((SG)->address ? \
	 __pa((SG)->address) : \
	 (__pa(page_address((SG)->page)) + (SG)->offset))

static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg,
			   int nused, int nelems, unsigned long iopte_protection)
{
	struct scatterlist *dma_sg = sg;
	struct scatterlist *sg_end = sg + nelems;
	int i;

	for (i = 0; i < nused; i++) {
		unsigned long pteval = ~0UL;
		u32 dma_npages;

		dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
			      dma_sg->dma_length +
			      ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
		do {
			unsigned long offset;
			signed int len;

			/* If we are here, we know we have at least one
			 * more page to map.  So walk forward until we
			 * hit a page crossing, and begin creating new
			 * mappings from that spot.
			 */
			for (;;) {
				unsigned long tmp;

				tmp = SG_ENT_PHYS_ADDRESS(sg);
				len = sg->length;
				if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
					pteval = tmp & IO_PAGE_MASK;
					offset = tmp & (IO_PAGE_SIZE - 1UL);
					break;
				}
				if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
					pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
					offset = 0UL;
					len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
					break;
				}
				sg++;
			}

			pteval = iopte_protection | (pteval & IOPTE_PAGE);
			while (len > 0) {
				*iopte++ = __iopte(pteval);
				pteval += IO_PAGE_SIZE;
				len -= (IO_PAGE_SIZE - offset);
				offset = 0;
				dma_npages--;
			}

			pteval = (pteval & IOPTE_PAGE) + len;
			sg++;

			/* Skip over any tail mappings we've fully mapped,
			 * adjusting pteval along the way.  Stop when we
			 * detect a page crossing event.
			 */
			while (sg < sg_end &&
			       (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
			       (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
			       ((pteval ^
				 (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
				pteval += sg->length;
				sg++;
			}
			if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
				pteval = ~0UL;
		} while (dma_npages != 0);
		dma_sg++;
	}
}

/* Map a set of buffers described by SGLIST with NELEMS array
 * elements in streaming mode for PCI DMA.
 * When making changes here, inspect the assembly output. I was having
 * hard time to kepp this routine out of using stack slots for holding variables.
 */
int pci_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	struct pci_strbuf *strbuf;
	unsigned long flags, ctx, npages, iopte_protection;
	iopte_t *base;
	u32 dma_base;
	struct scatterlist *sgtmp;
	int used;

	/* Fast path single entry scatterlists. */
	if (nelems == 1) {
		sglist->dma_address =
			pci_map_single(pdev,
				       (sglist->address ?
					sglist->address :
					(page_address(sglist->page) + sglist->offset)),
				       sglist->length, direction);
		sglist->dma_length = sglist->length;
		return 1;
	}

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	strbuf = &pcp->pbm->stc;
	
	if (direction == PCI_DMA_NONE)
		BUG();

	/* Step 1: Prepare scatter list. */

	npages = prepare_sg(sglist, nelems);

	/* Step 2: Allocate a cluster. */

	spin_lock_irqsave(&iommu->lock, flags);

	base = alloc_streaming_cluster(iommu, npages);
	if (base == NULL)
		goto bad;
	dma_base = iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT);

	/* Step 3: Normalize DMA addresses. */
	used = nelems;

	sgtmp = sglist;
	while (used && sgtmp->dma_length) {
		sgtmp->dma_address += dma_base;
		sgtmp++;
		used--;
	}
	used = nelems - used;

	/* Step 4: Choose a context if necessary. */
	ctx = 0;
	if (iommu->iommu_ctxflush)
		ctx = iommu->iommu_cur_ctx++;

	/* Step 5: Create the mappings. */
	if (strbuf->strbuf_enabled)
		iopte_protection = IOPTE_STREAMING(ctx);
	else
		iopte_protection = IOPTE_CONSISTENT(ctx);
	if (direction != PCI_DMA_TODEVICE)
		iopte_protection |= IOPTE_WRITE;
	fill_sg (base, sglist, used, nelems, iopte_protection);
#ifdef VERIFY_SG
	verify_sglist(sglist, nelems, base, npages);
#endif

	spin_unlock_irqrestore(&iommu->lock, flags);

	return used;

bad:
	spin_unlock_irqrestore(&iommu->lock, flags);
	BUG();
	return 0;
}

/* Unmap a set of streaming mode DMA translations. */
void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	struct pci_strbuf *strbuf;
	iopte_t *base;
	unsigned long flags, ctx, i, npages;
	u32 bus_addr;

	if (direction == PCI_DMA_NONE)
		BUG();

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	strbuf = &pcp->pbm->stc;
	
	bus_addr = sglist->dma_address & IO_PAGE_MASK;

	for (i = 1; i < nelems; i++)
		if (sglist[i].dma_length == 0)
			break;
	i--;
	npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT;

	base = iommu->page_table +
		((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);

#ifdef DEBUG_PCI_IOMMU
	if (iopte_val(*base) == IOPTE_INVALID)
		printk("pci_unmap_sg called on non-mapped region %016lx,%d from %016lx\n", sglist->dma_address, nelems, __builtin_return_address(0));
#endif

	spin_lock_irqsave(&iommu->lock, flags);

	/* Record the context, if any. */
	ctx = 0;
	if (iommu->iommu_ctxflush)
		ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;

	/* Step 1: Kick data out of streaming buffers if necessary. */
	if (strbuf->strbuf_enabled) {
		u32 vaddr = (u32) bus_addr;

		PCI_STC_FLUSHFLAG_INIT(strbuf);
		if (strbuf->strbuf_ctxflush &&
		    iommu->iommu_ctxflush) {
			unsigned long matchreg, flushreg;

			flushreg = strbuf->strbuf_ctxflush;
			matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx);
			do {
				pci_iommu_write(flushreg, ctx);
			} while(((long)pci_iommu_read(matchreg)) < 0L);
		} else {
			for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
				pci_iommu_write(strbuf->strbuf_pflush, vaddr);
		}

		pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
		(void) pci_iommu_read(iommu->write_complete_reg);
		while (!PCI_STC_FLUSHFLAG_SET(strbuf))
			membar("#LoadLoad");
	}

	/* Step 2: Clear out first TSB entry. */
	iopte_val(*base) = IOPTE_INVALID;

	free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base,
			       npages, ctx);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

/* Make physical memory consistent for a single
 * streaming mode DMA translation after a transfer.
 */
void pci_dma_sync_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	struct pci_strbuf *strbuf;
	unsigned long flags, ctx, npages;

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	strbuf = &pcp->pbm->stc;

	if (!strbuf->strbuf_enabled)
		return;

	spin_lock_irqsave(&iommu->lock, flags);

	npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
	npages >>= IO_PAGE_SHIFT;
	bus_addr &= IO_PAGE_MASK;

	/* Step 1: Record the context, if any. */
	ctx = 0;
	if (iommu->iommu_ctxflush &&
	    strbuf->strbuf_ctxflush) {
		iopte_t *iopte;

		iopte = iommu->page_table +
			((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
		ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
	}

	/* Step 2: Kick data out of streaming buffers. */
	PCI_STC_FLUSHFLAG_INIT(strbuf);
	if (iommu->iommu_ctxflush &&
	    strbuf->strbuf_ctxflush) {
		unsigned long matchreg, flushreg;

		flushreg = strbuf->strbuf_ctxflush;
		matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx);
		do {
			pci_iommu_write(flushreg, ctx);
		} while(((long)pci_iommu_read(matchreg)) < 0L);
	} else {
		unsigned long i;

		for (i = 0; i < npages; i++, bus_addr += IO_PAGE_SIZE)
			pci_iommu_write(strbuf->strbuf_pflush, bus_addr);
	}

	/* Step 3: Perform flush synchronization sequence. */
	pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
	(void) pci_iommu_read(iommu->write_complete_reg);
	while (!PCI_STC_FLUSHFLAG_SET(strbuf))
		membar("#LoadLoad");

	spin_unlock_irqrestore(&iommu->lock, flags);
}

/* Make physical memory consistent for a set of streaming
 * mode DMA translations after a transfer.
 */
void pci_dma_sync_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
	struct pcidev_cookie *pcp;
	struct pci_iommu *iommu;
	struct pci_strbuf *strbuf;
	unsigned long flags, ctx;

	pcp = pdev->sysdata;
	iommu = pcp->pbm->iommu;
	strbuf = &pcp->pbm->stc;

	if (!strbuf->strbuf_enabled)
		return;

	spin_lock_irqsave(&iommu->lock, flags);

	/* Step 1: Record the context, if any. */
	ctx = 0;
	if (iommu->iommu_ctxflush &&
	    strbuf->strbuf_ctxflush) {
		iopte_t *iopte;

		iopte = iommu->page_table +
			((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
		ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
	}

	/* Step 2: Kick data out of streaming buffers. */
	PCI_STC_FLUSHFLAG_INIT(strbuf);
	if (iommu->iommu_ctxflush &&
	    strbuf->strbuf_ctxflush) {
		unsigned long matchreg, flushreg;

		flushreg = strbuf->strbuf_ctxflush;
		matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx);
		do {
			pci_iommu_write(flushreg, ctx);
		} while (((long)pci_iommu_read(matchreg)) < 0L);
	} else {
		unsigned long i, npages;
		u32 bus_addr;

		bus_addr = sglist[0].dma_address & IO_PAGE_MASK;

		for(i = 1; i < nelems; i++)
			if (!sglist[i].dma_length)
				break;
		i--;
		npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT;
		for (i = 0; i < npages; i++, bus_addr += IO_PAGE_SIZE)
			pci_iommu_write(strbuf->strbuf_pflush, bus_addr);
	}

	/* Step 3: Perform flush synchronization sequence. */
	pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
	(void) pci_iommu_read(iommu->write_complete_reg);
	while (!PCI_STC_FLUSHFLAG_SET(strbuf))
		membar("#LoadLoad");

	spin_unlock_irqrestore(&iommu->lock, flags);
}

int pci_dma_supported(struct pci_dev *pdev, u64 device_mask)
{
	struct pcidev_cookie *pcp = pdev->sysdata;
	u64 dma_addr_mask;

	if (pdev == NULL) {
		dma_addr_mask = 0xffffffff;
	} else {
		struct pci_iommu *iommu = pcp->pbm->iommu;

		dma_addr_mask = iommu->dma_addr_mask;
	}

	return (device_mask & dma_addr_mask) == dma_addr_mask;
}