Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
/*
 * Common Flash Interface support:
 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
 *
 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
 *
 * 2_by_8 routines added by Simon Munton
 *
 * This code is GPL
 *
 * $Id: cfi_cmdset_0002.c,v 1.52 2001/10/24 09:37:30 dwmw2 Exp $
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <asm/byteorder.h>

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi.h>

#define AMD_BOOTLOC_BUG

static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_erase_onesize(struct mtd_info *, struct erase_info *);
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_amdstd_sync (struct mtd_info *);
static int cfi_amdstd_suspend (struct mtd_info *);
static void cfi_amdstd_resume (struct mtd_info *);

static void cfi_amdstd_destroy(struct mtd_info *);

struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
static struct mtd_info *cfi_amdstd_setup (struct map_info *);


static struct mtd_chip_driver cfi_amdstd_chipdrv = {
	probe: NULL, /* Not usable directly */
	destroy: cfi_amdstd_destroy,
	name: "cfi_cmdset_0002",
	module: THIS_MODULE
};

struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned char bootloc;
	int ofs_factor = cfi->interleave * cfi->device_type;
	int i;
	__u8 major, minor;
	__u32 base = cfi->chips[0].start;

	if (cfi->cfi_mode==1){
		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;

		cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
		
		major = cfi_read_query(map, base + (adr+3)*ofs_factor);
		minor = cfi_read_query(map, base + (adr+4)*ofs_factor);
		
		printk(KERN_NOTICE " Amd/Fujitsu Extended Query Table v%c.%c at 0x%4.4X\n",
		       major, minor, adr);
				cfi_send_gen_cmd(0xf0, 0x55, base, map, cfi, cfi->device_type, NULL);
		
		cfi_send_gen_cmd(0xaa, 0x555, base, map, cfi, cfi->device_type, NULL);
		cfi_send_gen_cmd(0x55, 0x2aa, base, map, cfi, cfi->device_type, NULL);
		cfi_send_gen_cmd(0x90, 0x555, base, map, cfi, cfi->device_type, NULL);
		cfi->mfr = cfi_read_query(map, base);
		cfi->id = cfi_read_query(map, base + ofs_factor);

		/* Wheee. Bring me the head of someone at AMD. */
#ifdef AMD_BOOTLOC_BUG
		if (((major << 8) | minor) < 0x3131) {
			/* CFI version 1.0 => don't trust bootloc */
			if (cfi->id & 0x80) {
				printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
				bootloc = 3;	/* top boot */
			} else {
				bootloc = 2;	/* bottom boot */
			}
		} else
#endif
			{
				cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
				bootloc = cfi_read_query(map, base + (adr+15)*ofs_factor);
			}
		if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
			printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
			
			for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
				int j = (cfi->cfiq->NumEraseRegions-1)-i;
				__u32 swap;
				
				swap = cfi->cfiq->EraseRegionInfo[i];
				cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
				cfi->cfiq->EraseRegionInfo[j] = swap;
			}
		}
		switch (cfi->device_type) {
		case CFI_DEVICETYPE_X8:
			cfi->addr_unlock1 = 0x555; 
			cfi->addr_unlock2 = 0x2aa; 
			break;
		case CFI_DEVICETYPE_X16:
			cfi->addr_unlock1 = 0xaaa;
			if (map->buswidth == cfi->interleave) {
				/* X16 chip(s) in X8 mode */
				cfi->addr_unlock2 = 0x555;
			} else {
				cfi->addr_unlock2 = 0x554;
			}
			break;
		case CFI_DEVICETYPE_X32:
			cfi->addr_unlock1 = 0x1555; 
			cfi->addr_unlock2 = 0xaaa; 
			break;
		default:
			printk(KERN_NOTICE "Eep. Unknown cfi_cmdset_0002 device type %d\n", cfi->device_type);
			return NULL;
		}
	} /* CFI mode */

	for (i=0; i< cfi->numchips; i++) {
		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
	}		
	
	map->fldrv = &cfi_amdstd_chipdrv;
	MOD_INC_USE_COUNT;

	cfi_send_gen_cmd(0xf0, 0x55, base, map, cfi, cfi->device_type, NULL);
	return cfi_amdstd_setup(map);
}

static struct mtd_info *cfi_amdstd_setup(struct map_info *map)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct mtd_info *mtd;
	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;

	mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
	printk(KERN_NOTICE "number of %s chips: %d\n", (cfi->cfi_mode)?"CFI":"JEDEC",cfi->numchips);

	if (!mtd) {
	  printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
	  kfree(cfi->cmdset_priv);
	  return NULL;
	}

	memset(mtd, 0, sizeof(*mtd));
	mtd->priv = map;
	mtd->type = MTD_NORFLASH;
	/* Also select the correct geometry setup too */ 
	mtd->size = devsize * cfi->numchips;
	
	if (cfi->cfiq->NumEraseRegions == 1) {
		/* No need to muck about with multiple erase sizes */
		mtd->erasesize = ((cfi->cfiq->EraseRegionInfo[0] >> 8) & ~0xff) * cfi->interleave;
	} else {
		unsigned long offset = 0;
		int i,j;

		mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
		mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL);
		if (!mtd->eraseregions) { 
			printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
			kfree(cfi->cmdset_priv);
			return NULL;
		}
			
		for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
			unsigned long ernum, ersize;
			ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
			ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
			
			if (mtd->erasesize < ersize) {
				mtd->erasesize = ersize;
			}
			for (j=0; j<cfi->numchips; j++) {
				mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
				mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
				mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
			}
			offset += (ersize * ernum);
		}
		if (offset != devsize) {
			/* Argh */
			printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
			kfree(mtd->eraseregions);
			kfree(cfi->cmdset_priv);
			return NULL;
		}
#if 0
		// debug
		for (i=0; i<mtd->numeraseregions;i++){
			printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
			       i,mtd->eraseregions[i].offset,
			       mtd->eraseregions[i].erasesize,
			       mtd->eraseregions[i].numblocks);
		}
#endif
	}

	switch (CFIDEV_BUSWIDTH)
	{
	case 1:
	case 2:
	case 4:
#if 1
		if (mtd->numeraseregions > 1)
			mtd->erase = cfi_amdstd_erase_varsize;
		else
#endif
			mtd->erase = cfi_amdstd_erase_onesize;
		mtd->read = cfi_amdstd_read;
		mtd->write = cfi_amdstd_write;
		break;

	default:
	        printk(KERN_WARNING "Unsupported buswidth\n");
		kfree(mtd);
		kfree(cfi->cmdset_priv);
		return NULL;
		break;
	}
	mtd->sync = cfi_amdstd_sync;
	mtd->suspend = cfi_amdstd_suspend;
	mtd->resume = cfi_amdstd_resume;
	mtd->flags = MTD_CAP_NORFLASH;
	map->fldrv = &cfi_amdstd_chipdrv;
	mtd->name = map->name;
	MOD_INC_USE_COUNT;
	return mtd;
}

static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long timeo = jiffies + HZ;

 retry:
	cfi_spin_lock(chip->mutex);

	if (chip->state != FL_READY){
#if 0
	        printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
#endif
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
                
		cfi_spin_unlock(chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);
#if 0
		if(signal_pending(current))
			return -EINTR;
#endif
		timeo = jiffies + HZ;

		goto retry;
	}	

	adr += chip->start;

	chip->state = FL_READY;

	map->copy_from(map, buf, adr, len);

	wake_up(&chip->wq);
	cfi_spin_unlock(chip->mutex);

	return 0;
}

static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	/* ofs: offset within the first chip that the first read should start */

	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);


	*retlen = 0;

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		buf += thislen;

		ofs = 0;
		chipnum++;
	}
	return ret;
}

static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, __u32 datum, int fast)
{
	unsigned long timeo = jiffies + HZ;
	unsigned int Last[4];
	unsigned long Count = 0;
	struct cfi_private *cfi = map->fldrv_priv;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

 retry:
	cfi_spin_lock(chip->mutex);

	if (chip->state != FL_READY){
#if 0
	        printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", chip->state);
#endif
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
                
		cfi_spin_unlock(chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);
#if 0
		printk(KERN_DEBUG "Wake up to write:\n");
		if(signal_pending(current))
			return -EINTR;
#endif
		timeo = jiffies + HZ;

		goto retry;
	}	

	chip->state = FL_WRITING;

	adr += chip->start;
	ENABLE_VPP(map);
	if (fast) { /* Unlock bypass */
		cfi_send_gen_cmd(0xA0, 0, chip->start, map, cfi, cfi->device_type, NULL);
	}
	else {
	        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	}

	cfi_write(map, datum, adr);

	cfi_spin_unlock(chip->mutex);
	cfi_udelay(chip->word_write_time);
	cfi_spin_lock(chip->mutex);

	Last[0] = cfi_read(map, adr);
	//	printk("Last[0] is %x\n", Last[0]);
	Last[1] = cfi_read(map, adr);
	//	printk("Last[1] is %x\n", Last[1]);
	Last[2] = cfi_read(map, adr);
	//	printk("Last[2] is %x\n", Last[2]);

	for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && Count < 10000; Count++){
		cfi_spin_unlock(chip->mutex);
		cfi_udelay(10);
		cfi_spin_lock(chip->mutex);
		
	        Last[Count % 4] = cfi_read(map, adr);
		//		printk("Last[%d%%4] is %x\n", Count, Last[Count%4]);
	}
	
	if (Last[(Count - 1) % 4] != datum){
		printk(KERN_WARNING "Last[%ld] is %x, datum is %x\n",(Count - 1) % 4,Last[(Count - 1) % 4],datum);
	        cfi_send_gen_cmd(0xF0, 0, chip->start, map, cfi, cfi->device_type, NULL);
		DISABLE_VPP(map);
		ret = -EIO;
	}       
	DISABLE_VPP(map);
	chip->state = FL_READY;
	wake_up(&chip->wq);
	cfi_spin_unlock(chip->mutex);
	
	return ret;
}

static int cfi_amdstd_write (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;
	int chipnum;
	unsigned long ofs, chipstart;

	*retlen = 0;
	if (!len)
		return 0;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);
	chipstart = cfi->chips[chipnum].start;

	/* If it's not bus-aligned, do the first byte write */
	if (ofs & (CFIDEV_BUSWIDTH-1)) {
		unsigned long bus_ofs = ofs & ~(CFIDEV_BUSWIDTH-1);
		int i = ofs - bus_ofs;
		int n = 0;
		u_char tmp_buf[4];
		__u32 datum;

		map->copy_from(map, tmp_buf, bus_ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH);
		while (len && i < CFIDEV_BUSWIDTH)
			tmp_buf[i++] = buf[n++], len--;

		if (cfi_buswidth_is_2()) {
			datum = *(__u16*)tmp_buf;
		} else if (cfi_buswidth_is_4()) {
			datum = *(__u32*)tmp_buf;
		} else {
			return -EINVAL;  /* should never happen, but be safe */
		}

		ret = do_write_oneword(map, &cfi->chips[chipnum], 
				bus_ofs, datum, 0);
		if (ret) 
			return ret;
		
		ofs += n;
		buf += n;
		(*retlen) += n;

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}
	
	/* Go into unlock bypass mode */
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_send_gen_cmd(0x20, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL);

	/* We are now aligned, write as much as possible */
	while(len >= CFIDEV_BUSWIDTH) {
		__u32 datum;

		if (cfi_buswidth_is_1()) {
			datum = *(__u8*)buf;
		} else if (cfi_buswidth_is_2()) {
			datum = *(__u16*)buf;
		} else if (cfi_buswidth_is_4()) {
			datum = *(__u32*)buf;
		} else {
			return -EINVAL;
		}
		ret = do_write_oneword(map, &cfi->chips[chipnum],
				       ofs, datum, cfi->fast_prog);
		if (ret) {
			if (cfi->fast_prog){
				/* Get out of unlock bypass mode */
				cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL);
				cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL);
			}
			return ret;
		}

		ofs += CFIDEV_BUSWIDTH;
		buf += CFIDEV_BUSWIDTH;
		(*retlen) += CFIDEV_BUSWIDTH;
		len -= CFIDEV_BUSWIDTH;

		if (ofs >> cfi->chipshift) {
			if (cfi->fast_prog){
				/* Get out of unlock bypass mode */
				cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL);
				cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL);
			}

			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
			chipstart = cfi->chips[chipnum].start;
			if (cfi->fast_prog){
				/* Go into unlock bypass mode for next set of chips */
				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL);
				cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL);
				cfi_send_gen_cmd(0x20, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL);
			}
		}
	}

	if (cfi->fast_prog){
		/* Get out of unlock bypass mode */
		cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL);
		cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL);
	}

	if (len & (CFIDEV_BUSWIDTH-1)) {
		int i = 0, n = 0;
		u_char tmp_buf[4];
		__u32 datum;

		map->copy_from(map, tmp_buf, ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH);
		while (len--)
			tmp_buf[i++] = buf[n++];

		if (cfi_buswidth_is_2()) {
			datum = *(__u16*)tmp_buf;
		} else if (cfi_buswidth_is_4()) {
			datum = *(__u32*)tmp_buf;
		} else {
			return -EINVAL;  /* should never happen, but be safe */
		}

		ret = do_write_oneword(map, &cfi->chips[chipnum], 
				ofs, datum, 0);
		if (ret) 
			return ret;
		
		(*retlen) += n;
	}

	return 0;
}

static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	unsigned int status;
	unsigned long timeo = jiffies + HZ;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned int rdy_mask;
	DECLARE_WAITQUEUE(wait, current);

 retry:
	cfi_spin_lock(chip->mutex);

	if (chip->state != FL_READY){
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
                
		cfi_spin_unlock(chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);
#if 0
		if(signal_pending(current))
			return -EINTR;
#endif
		timeo = jiffies + HZ;

		goto retry;
	}	

	chip->state = FL_ERASING;

	adr += chip->start;
	ENABLE_VPP(map);
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);
	cfi_write(map, CMD(0x30), adr);
	
	timeo = jiffies + (HZ*20);

	cfi_spin_unlock(chip->mutex);
	schedule_timeout(HZ);
	cfi_spin_lock(chip->mutex);
	
	rdy_mask = CMD(0x80);

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	while ( ( (status = cfi_read(map,adr)) & rdy_mask ) != rdy_mask ) {
		static int z=0;

		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			
			cfi_spin_unlock(chip->mutex);
			printk(KERN_DEBUG "erase suspended. Sleeping\n");
			
			schedule();
			remove_wait_queue(&chip->wq, &wait);
#if 0			
			if (signal_pending(current))
				return -EINTR;
#endif			
			timeo = jiffies + (HZ*2); /* FIXME */
			cfi_spin_lock(chip->mutex);
			continue;
		}

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			chip->state = FL_READY;
			cfi_spin_unlock(chip->mutex);
			printk(KERN_WARNING "waiting for erase to complete timed out.");
			DISABLE_VPP(map);
			return -EIO;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		cfi_spin_unlock(chip->mutex);

		z++;
		if ( 0 && !(z % 100 )) 
			printk(KERN_WARNING "chip not ready yet after erase. looping\n");

		cfi_udelay(1);
		
		cfi_spin_lock(chip->mutex);
		continue;
	}
	
	/* Done and happy. */
	DISABLE_VPP(map);
	chip->state = FL_READY;
	wake_up(&chip->wq);
	cfi_spin_unlock(chip->mutex);
	return 0;
}

static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long adr, len;
	int chipnum, ret = 0;
	int i, first;
	struct mtd_erase_region_info *regions = mtd->eraseregions;

	if (instr->addr > mtd->size)
		return -EINVAL;

	if ((instr->len + instr->addr) > mtd->size)
		return -EINVAL;

	/* Check that both start and end of the requested erase are
	 * aligned with the erasesize at the appropriate addresses.
	 */

	i = 0;

	/* Skip all erase regions which are ended before the start of 
	   the requested erase. Actually, to save on the calculations,
	   we skip to the first erase region which starts after the
	   start of the requested erase, and then go back one.
	*/
	
	while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
	       i++;
	i--;

	/* OK, now i is pointing at the erase region in which this 
	   erase request starts. Check the start of the requested
	   erase range is aligned with the erase size which is in
	   effect here.
	*/

	if (instr->addr & (regions[i].erasesize-1))
		return -EINVAL;

	/* Remember the erase region we start on */
	first = i;

	/* Next, check that the end of the requested erase is aligned
	 * with the erase region at that address.
	 */

	while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
		i++;

	/* As before, drop back one to point at the region in which
	   the address actually falls
	*/
	i--;
	
	if ((instr->addr + instr->len) & (regions[i].erasesize-1))
		return -EINVAL;
	
	chipnum = instr->addr >> cfi->chipshift;
	adr = instr->addr - (chipnum << cfi->chipshift);
	len = instr->len;

	i=first;

	while(len) {
		ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);

		if (ret)
			return ret;

		adr += regions[i].erasesize;
		len -= regions[i].erasesize;

		if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
			i++;

		if (adr >> cfi->chipshift) {
			adr = 0;
			chipnum++;
			
			if (chipnum >= cfi->numchips)
			break;
		}
	}

	instr->state = MTD_ERASE_DONE;
	if (instr->callback)
		instr->callback(instr);
	
	return 0;
}

static int cfi_amdstd_erase_onesize(struct mtd_info *mtd, struct erase_info *instr)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long adr, len;
	int chipnum, ret = 0;

	if (instr->addr & (mtd->erasesize - 1))
		return -EINVAL;

	if (instr->len & (mtd->erasesize -1))
		return -EINVAL;

	if ((instr->len + instr->addr) > mtd->size)
		return -EINVAL;

	chipnum = instr->addr >> cfi->chipshift;
	adr = instr->addr - (chipnum << cfi->chipshift);
	len = instr->len;

	while(len) {
		ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);

		if (ret)
			return ret;

		adr += mtd->erasesize;
		len -= mtd->erasesize;

		if (adr >> cfi->chipshift) {
			adr = 0;
			chipnum++;
			
			if (chipnum >= cfi->numchips)
			break;
		}
	}
		
	instr->state = MTD_ERASE_DONE;
	if (instr->callback)
		instr->callback(instr);
	
	return 0;
}

static void cfi_amdstd_sync (struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;
	DECLARE_WAITQUEUE(wait, current);

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

	retry:
		cfi_spin_lock(chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_SYNCING;
			/* No need to wake_up() on this state change - 
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_SYNCING:
			cfi_spin_unlock(chip->mutex);
			break;

		default:
			/* Not an idle state */
			add_wait_queue(&chip->wq, &wait);
			
			cfi_spin_unlock(chip->mutex);

			schedule();

		        remove_wait_queue(&chip->wq, &wait);
			
			goto retry;
		}
	}

	/* Unlock the chips again */

	for (i--; i >=0; i--) {
		chip = &cfi->chips[i];

		cfi_spin_lock(chip->mutex);
		
		if (chip->state == FL_SYNCING) {
			chip->state = chip->oldstate;
			wake_up(&chip->wq);
		}
		cfi_spin_unlock(chip->mutex);
	}
}


static int cfi_amdstd_suspend(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;
//printk("suspend\n");

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		cfi_spin_lock(chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_PM_SUSPENDED;
			/* No need to wake_up() on this state change - 
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_PM_SUSPENDED:
			break;

		default:
			ret = -EAGAIN;
			break;
		}
		cfi_spin_unlock(chip->mutex);
	}

	/* Unlock the chips again */

	if (ret) {
    		for (i--; i >=0; i--) {
			chip = &cfi->chips[i];

			cfi_spin_lock(chip->mutex);
		
			if (chip->state == FL_PM_SUSPENDED) {
				chip->state = chip->oldstate;
				wake_up(&chip->wq);
			}
			cfi_spin_unlock(chip->mutex);
		}
	}
	
	return ret;
}

static void cfi_amdstd_resume(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
//printk("resume\n");

	for (i=0; i<cfi->numchips; i++) {
	
		chip = &cfi->chips[i];

		cfi_spin_lock(chip->mutex);
		
		if (chip->state == FL_PM_SUSPENDED) {
			chip->state = FL_READY;
			cfi_write(map, CMD(0xF0), chip->start);
			wake_up(&chip->wq);
		}
		else
			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");

		cfi_spin_unlock(chip->mutex);
	}
}

static void cfi_amdstd_destroy(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	kfree(cfi->cmdset_priv);
	kfree(cfi);
}

static char im_name[]="cfi_cmdset_0002";

int __init cfi_amdstd_init(void)
{
	inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002);
	return 0;
}

static void __exit cfi_amdstd_exit(void)
{
	inter_module_unregister(im_name);
}

module_init(cfi_amdstd_init);
module_exit(cfi_amdstd_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");