Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | /* * Common Flash Interface support: * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) * * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> * * 2_by_8 routines added by Simon Munton * * This code is GPL * * $Id: cfi_cmdset_0002.c,v 1.52 2001/10/24 09:37:30 dwmw2 Exp $ * */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <asm/io.h> #include <asm/byteorder.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/mtd/map.h> #include <linux/mtd/cfi.h> #define AMD_BOOTLOC_BUG static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_amdstd_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); static int cfi_amdstd_erase_onesize(struct mtd_info *, struct erase_info *); static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); static void cfi_amdstd_sync (struct mtd_info *); static int cfi_amdstd_suspend (struct mtd_info *); static void cfi_amdstd_resume (struct mtd_info *); static void cfi_amdstd_destroy(struct mtd_info *); struct mtd_info *cfi_cmdset_0002(struct map_info *, int); static struct mtd_info *cfi_amdstd_setup (struct map_info *); static struct mtd_chip_driver cfi_amdstd_chipdrv = { probe: NULL, /* Not usable directly */ destroy: cfi_amdstd_destroy, name: "cfi_cmdset_0002", module: THIS_MODULE }; struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) { struct cfi_private *cfi = map->fldrv_priv; unsigned char bootloc; int ofs_factor = cfi->interleave * cfi->device_type; int i; __u8 major, minor; __u32 base = cfi->chips[0].start; if (cfi->cfi_mode==1){ __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); major = cfi_read_query(map, base + (adr+3)*ofs_factor); minor = cfi_read_query(map, base + (adr+4)*ofs_factor); printk(KERN_NOTICE " Amd/Fujitsu Extended Query Table v%c.%c at 0x%4.4X\n", major, minor, adr); cfi_send_gen_cmd(0xf0, 0x55, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0xaa, 0x555, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, 0x2aa, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x90, 0x555, base, map, cfi, cfi->device_type, NULL); cfi->mfr = cfi_read_query(map, base); cfi->id = cfi_read_query(map, base + ofs_factor); /* Wheee. Bring me the head of someone at AMD. */ #ifdef AMD_BOOTLOC_BUG if (((major << 8) | minor) < 0x3131) { /* CFI version 1.0 => don't trust bootloc */ if (cfi->id & 0x80) { printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); bootloc = 3; /* top boot */ } else { bootloc = 2; /* bottom boot */ } } else #endif { cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); bootloc = cfi_read_query(map, base + (adr+15)*ofs_factor); } if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name); for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { int j = (cfi->cfiq->NumEraseRegions-1)-i; __u32 swap; swap = cfi->cfiq->EraseRegionInfo[i]; cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j]; cfi->cfiq->EraseRegionInfo[j] = swap; } } switch (cfi->device_type) { case CFI_DEVICETYPE_X8: cfi->addr_unlock1 = 0x555; cfi->addr_unlock2 = 0x2aa; break; case CFI_DEVICETYPE_X16: cfi->addr_unlock1 = 0xaaa; if (map->buswidth == cfi->interleave) { /* X16 chip(s) in X8 mode */ cfi->addr_unlock2 = 0x555; } else { cfi->addr_unlock2 = 0x554; } break; case CFI_DEVICETYPE_X32: cfi->addr_unlock1 = 0x1555; cfi->addr_unlock2 = 0xaaa; break; default: printk(KERN_NOTICE "Eep. Unknown cfi_cmdset_0002 device type %d\n", cfi->device_type); return NULL; } } /* CFI mode */ for (i=0; i< cfi->numchips; i++) { cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; } map->fldrv = &cfi_amdstd_chipdrv; MOD_INC_USE_COUNT; cfi_send_gen_cmd(0xf0, 0x55, base, map, cfi, cfi->device_type, NULL); return cfi_amdstd_setup(map); } static struct mtd_info *cfi_amdstd_setup(struct map_info *map) { struct cfi_private *cfi = map->fldrv_priv; struct mtd_info *mtd; unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); printk(KERN_NOTICE "number of %s chips: %d\n", (cfi->cfi_mode)?"CFI":"JEDEC",cfi->numchips); if (!mtd) { printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); kfree(cfi->cmdset_priv); return NULL; } memset(mtd, 0, sizeof(*mtd)); mtd->priv = map; mtd->type = MTD_NORFLASH; /* Also select the correct geometry setup too */ mtd->size = devsize * cfi->numchips; if (cfi->cfiq->NumEraseRegions == 1) { /* No need to muck about with multiple erase sizes */ mtd->erasesize = ((cfi->cfiq->EraseRegionInfo[0] >> 8) & ~0xff) * cfi->interleave; } else { unsigned long offset = 0; int i,j; mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); if (!mtd->eraseregions) { printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); kfree(cfi->cmdset_priv); return NULL; } for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; if (mtd->erasesize < ersize) { mtd->erasesize = ersize; } for (j=0; j<cfi->numchips; j++) { mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; } offset += (ersize * ernum); } if (offset != devsize) { /* Argh */ printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); kfree(mtd->eraseregions); kfree(cfi->cmdset_priv); return NULL; } #if 0 // debug for (i=0; i<mtd->numeraseregions;i++){ printk("%d: offset=0x%x,size=0x%x,blocks=%d\n", i,mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].numblocks); } #endif } switch (CFIDEV_BUSWIDTH) { case 1: case 2: case 4: #if 1 if (mtd->numeraseregions > 1) mtd->erase = cfi_amdstd_erase_varsize; else #endif mtd->erase = cfi_amdstd_erase_onesize; mtd->read = cfi_amdstd_read; mtd->write = cfi_amdstd_write; break; default: printk(KERN_WARNING "Unsupported buswidth\n"); kfree(mtd); kfree(cfi->cmdset_priv); return NULL; break; } mtd->sync = cfi_amdstd_sync; mtd->suspend = cfi_amdstd_suspend; mtd->resume = cfi_amdstd_resume; mtd->flags = MTD_CAP_NORFLASH; map->fldrv = &cfi_amdstd_chipdrv; mtd->name = map->name; MOD_INC_USE_COUNT; return mtd; } static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) { DECLARE_WAITQUEUE(wait, current); unsigned long timeo = jiffies + HZ; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ #if 0 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state); #endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } adr += chip->start; chip->state = FL_READY; map->copy_from(map, buf, adr, len); wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return 0; } static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long ofs; int chipnum; int ret = 0; /* ofs: offset within the first chip that the first read should start */ chipnum = (from >> cfi->chipshift); ofs = from - (chipnum << cfi->chipshift); *retlen = 0; while (len) { unsigned long thislen; if (chipnum >= cfi->numchips) break; if ((len + ofs -1) >> cfi->chipshift) thislen = (1<<cfi->chipshift) - ofs; else thislen = len; ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); if (ret) break; *retlen += thislen; len -= thislen; buf += thislen; ofs = 0; chipnum++; } return ret; } static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, __u32 datum, int fast) { unsigned long timeo = jiffies + HZ; unsigned int Last[4]; unsigned long Count = 0; struct cfi_private *cfi = map->fldrv_priv; DECLARE_WAITQUEUE(wait, current); int ret = 0; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ #if 0 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", chip->state); #endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 printk(KERN_DEBUG "Wake up to write:\n"); if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } chip->state = FL_WRITING; adr += chip->start; ENABLE_VPP(map); if (fast) { /* Unlock bypass */ cfi_send_gen_cmd(0xA0, 0, chip->start, map, cfi, cfi->device_type, NULL); } else { cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); } cfi_write(map, datum, adr); cfi_spin_unlock(chip->mutex); cfi_udelay(chip->word_write_time); cfi_spin_lock(chip->mutex); Last[0] = cfi_read(map, adr); // printk("Last[0] is %x\n", Last[0]); Last[1] = cfi_read(map, adr); // printk("Last[1] is %x\n", Last[1]); Last[2] = cfi_read(map, adr); // printk("Last[2] is %x\n", Last[2]); for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && Count < 10000; Count++){ cfi_spin_unlock(chip->mutex); cfi_udelay(10); cfi_spin_lock(chip->mutex); Last[Count % 4] = cfi_read(map, adr); // printk("Last[%d%%4] is %x\n", Count, Last[Count%4]); } if (Last[(Count - 1) % 4] != datum){ printk(KERN_WARNING "Last[%ld] is %x, datum is %x\n",(Count - 1) % 4,Last[(Count - 1) % 4],datum); cfi_send_gen_cmd(0xF0, 0, chip->start, map, cfi, cfi->device_type, NULL); DISABLE_VPP(map); ret = -EIO; } DISABLE_VPP(map); chip->state = FL_READY; wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return ret; } static int cfi_amdstd_write (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int ret = 0; int chipnum; unsigned long ofs, chipstart; *retlen = 0; if (!len) return 0; chipnum = to >> cfi->chipshift; ofs = to - (chipnum << cfi->chipshift); chipstart = cfi->chips[chipnum].start; /* If it's not bus-aligned, do the first byte write */ if (ofs & (CFIDEV_BUSWIDTH-1)) { unsigned long bus_ofs = ofs & ~(CFIDEV_BUSWIDTH-1); int i = ofs - bus_ofs; int n = 0; u_char tmp_buf[4]; __u32 datum; map->copy_from(map, tmp_buf, bus_ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH); while (len && i < CFIDEV_BUSWIDTH) tmp_buf[i++] = buf[n++], len--; if (cfi_buswidth_is_2()) { datum = *(__u16*)tmp_buf; } else if (cfi_buswidth_is_4()) { datum = *(__u32*)tmp_buf; } else { return -EINVAL; /* should never happen, but be safe */ } ret = do_write_oneword(map, &cfi->chips[chipnum], bus_ofs, datum, 0); if (ret) return ret; ofs += n; buf += n; (*retlen) += n; if (ofs >> cfi->chipshift) { chipnum ++; ofs = 0; if (chipnum == cfi->numchips) return 0; } } /* Go into unlock bypass mode */ cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x20, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); /* We are now aligned, write as much as possible */ while(len >= CFIDEV_BUSWIDTH) { __u32 datum; if (cfi_buswidth_is_1()) { datum = *(__u8*)buf; } else if (cfi_buswidth_is_2()) { datum = *(__u16*)buf; } else if (cfi_buswidth_is_4()) { datum = *(__u32*)buf; } else { return -EINVAL; } ret = do_write_oneword(map, &cfi->chips[chipnum], ofs, datum, cfi->fast_prog); if (ret) { if (cfi->fast_prog){ /* Get out of unlock bypass mode */ cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL); } return ret; } ofs += CFIDEV_BUSWIDTH; buf += CFIDEV_BUSWIDTH; (*retlen) += CFIDEV_BUSWIDTH; len -= CFIDEV_BUSWIDTH; if (ofs >> cfi->chipshift) { if (cfi->fast_prog){ /* Get out of unlock bypass mode */ cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL); } chipnum ++; ofs = 0; if (chipnum == cfi->numchips) return 0; chipstart = cfi->chips[chipnum].start; if (cfi->fast_prog){ /* Go into unlock bypass mode for next set of chips */ cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x20, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); } } } if (cfi->fast_prog){ /* Get out of unlock bypass mode */ cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL); } if (len & (CFIDEV_BUSWIDTH-1)) { int i = 0, n = 0; u_char tmp_buf[4]; __u32 datum; map->copy_from(map, tmp_buf, ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH); while (len--) tmp_buf[i++] = buf[n++]; if (cfi_buswidth_is_2()) { datum = *(__u16*)tmp_buf; } else if (cfi_buswidth_is_4()) { datum = *(__u32*)tmp_buf; } else { return -EINVAL; /* should never happen, but be safe */ } ret = do_write_oneword(map, &cfi->chips[chipnum], ofs, datum, 0); if (ret) return ret; (*retlen) += n; } return 0; } static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) { unsigned int status; unsigned long timeo = jiffies + HZ; struct cfi_private *cfi = map->fldrv_priv; unsigned int rdy_mask; DECLARE_WAITQUEUE(wait, current); retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } chip->state = FL_ERASING; adr += chip->start; ENABLE_VPP(map); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_write(map, CMD(0x30), adr); timeo = jiffies + (HZ*20); cfi_spin_unlock(chip->mutex); schedule_timeout(HZ); cfi_spin_lock(chip->mutex); rdy_mask = CMD(0x80); /* FIXME. Use a timer to check this, and return immediately. */ /* Once the state machine's known to be working I'll do that */ while ( ( (status = cfi_read(map,adr)) & rdy_mask ) != rdy_mask ) { static int z=0; if (chip->state != FL_ERASING) { /* Someone's suspended the erase. Sleep */ set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); printk(KERN_DEBUG "erase suspended. Sleeping\n"); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if (signal_pending(current)) return -EINTR; #endif timeo = jiffies + (HZ*2); /* FIXME */ cfi_spin_lock(chip->mutex); continue; } /* OK Still waiting */ if (time_after(jiffies, timeo)) { chip->state = FL_READY; cfi_spin_unlock(chip->mutex); printk(KERN_WARNING "waiting for erase to complete timed out."); DISABLE_VPP(map); return -EIO; } /* Latency issues. Drop the lock, wait a while and retry */ cfi_spin_unlock(chip->mutex); z++; if ( 0 && !(z % 100 )) printk(KERN_WARNING "chip not ready yet after erase. looping\n"); cfi_udelay(1); cfi_spin_lock(chip->mutex); continue; } /* Done and happy. */ DISABLE_VPP(map); chip->state = FL_READY; wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return 0; } static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long adr, len; int chipnum, ret = 0; int i, first; struct mtd_erase_region_info *regions = mtd->eraseregions; if (instr->addr > mtd->size) return -EINVAL; if ((instr->len + instr->addr) > mtd->size) return -EINVAL; /* Check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. */ i = 0; /* Skip all erase regions which are ended before the start of the requested erase. Actually, to save on the calculations, we skip to the first erase region which starts after the start of the requested erase, and then go back one. */ while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) i++; i--; /* OK, now i is pointing at the erase region in which this erase request starts. Check the start of the requested erase range is aligned with the erase size which is in effect here. */ if (instr->addr & (regions[i].erasesize-1)) return -EINVAL; /* Remember the erase region we start on */ first = i; /* Next, check that the end of the requested erase is aligned * with the erase region at that address. */ while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) i++; /* As before, drop back one to point at the region in which the address actually falls */ i--; if ((instr->addr + instr->len) & (regions[i].erasesize-1)) return -EINVAL; chipnum = instr->addr >> cfi->chipshift; adr = instr->addr - (chipnum << cfi->chipshift); len = instr->len; i=first; while(len) { ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); if (ret) return ret; adr += regions[i].erasesize; len -= regions[i].erasesize; if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) i++; if (adr >> cfi->chipshift) { adr = 0; chipnum++; if (chipnum >= cfi->numchips) break; } } instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback(instr); return 0; } static int cfi_amdstd_erase_onesize(struct mtd_info *mtd, struct erase_info *instr) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long adr, len; int chipnum, ret = 0; if (instr->addr & (mtd->erasesize - 1)) return -EINVAL; if (instr->len & (mtd->erasesize -1)) return -EINVAL; if ((instr->len + instr->addr) > mtd->size) return -EINVAL; chipnum = instr->addr >> cfi->chipshift; adr = instr->addr - (chipnum << cfi->chipshift); len = instr->len; while(len) { ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); if (ret) return ret; adr += mtd->erasesize; len -= mtd->erasesize; if (adr >> cfi->chipshift) { adr = 0; chipnum++; if (chipnum >= cfi->numchips) break; } } instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback(instr); return 0; } static void cfi_amdstd_sync (struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int i; struct flchip *chip; int ret = 0; DECLARE_WAITQUEUE(wait, current); for (i=0; !ret && i<cfi->numchips; i++) { chip = &cfi->chips[i]; retry: cfi_spin_lock(chip->mutex); switch(chip->state) { case FL_READY: case FL_STATUS: case FL_CFI_QUERY: case FL_JEDEC_QUERY: chip->oldstate = chip->state; chip->state = FL_SYNCING; /* No need to wake_up() on this state change - * as the whole point is that nobody can do anything * with the chip now anyway. */ case FL_SYNCING: cfi_spin_unlock(chip->mutex); break; default: /* Not an idle state */ add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); goto retry; } } /* Unlock the chips again */ for (i--; i >=0; i--) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); if (chip->state == FL_SYNCING) { chip->state = chip->oldstate; wake_up(&chip->wq); } cfi_spin_unlock(chip->mutex); } } static int cfi_amdstd_suspend(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int i; struct flchip *chip; int ret = 0; //printk("suspend\n"); for (i=0; !ret && i<cfi->numchips; i++) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); switch(chip->state) { case FL_READY: case FL_STATUS: case FL_CFI_QUERY: case FL_JEDEC_QUERY: chip->oldstate = chip->state; chip->state = FL_PM_SUSPENDED; /* No need to wake_up() on this state change - * as the whole point is that nobody can do anything * with the chip now anyway. */ case FL_PM_SUSPENDED: break; default: ret = -EAGAIN; break; } cfi_spin_unlock(chip->mutex); } /* Unlock the chips again */ if (ret) { for (i--; i >=0; i--) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); if (chip->state == FL_PM_SUSPENDED) { chip->state = chip->oldstate; wake_up(&chip->wq); } cfi_spin_unlock(chip->mutex); } } return ret; } static void cfi_amdstd_resume(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int i; struct flchip *chip; //printk("resume\n"); for (i=0; i<cfi->numchips; i++) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); if (chip->state == FL_PM_SUSPENDED) { chip->state = FL_READY; cfi_write(map, CMD(0xF0), chip->start); wake_up(&chip->wq); } else printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); cfi_spin_unlock(chip->mutex); } } static void cfi_amdstd_destroy(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; kfree(cfi->cmdset_priv); kfree(cfi); } static char im_name[]="cfi_cmdset_0002"; int __init cfi_amdstd_init(void) { inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002); return 0; } static void __exit cfi_amdstd_exit(void) { inter_module_unregister(im_name); } module_init(cfi_amdstd_init); module_exit(cfi_amdstd_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); |