Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | #ifndef _M68K_PGTABLE_H #define _M68K_PGTABLE_H #include <linux/config.h> #include <asm/setup.h> #ifndef __ASSEMBLY__ #include <asm/processor.h> #include <linux/threads.h> /* * This file contains the functions and defines necessary to modify and use * the m68k page table tree. */ #include <asm/virtconvert.h> /* * Cache handling functions */ #define flush_icache() \ do { \ if (CPU_IS_040_OR_060) \ asm __volatile__ ("nop\n\t" \ ".chip 68040\n\t" \ "cinva %%ic\n\t" \ ".chip 68k" : ); \ else { \ unsigned long _tmp; \ asm __volatile__ ("movec %%cacr,%0\n\t" \ "orw %1,%0\n\t" \ "movec %0,%%cacr" \ : "=&d" (_tmp) \ : "id" (FLUSH_I)); \ } \ } while (0) /* * invalidate the cache for the specified memory range. * It starts at the physical address specified for * the given number of bytes. */ extern void cache_clear (unsigned long paddr, int len); /* * push any dirty cache in the specified memory range. * It starts at the physical address specified for * the given number of bytes. */ extern void cache_push (unsigned long paddr, int len); /* * push and invalidate pages in the specified user virtual * memory range. */ extern void cache_push_v (unsigned long vaddr, int len); /* cache code */ #define FLUSH_I_AND_D (0x00000808) #define FLUSH_I (0x00000008) /* This is needed whenever the virtual mapping of the current process changes. */ #define __flush_cache_all() \ do { \ if (CPU_IS_040_OR_060) \ __asm__ __volatile__ ("nop\n\t" \ ".chip 68040\n\t" \ "cpusha %dc\n\t" \ ".chip 68k"); \ else { \ unsigned long _tmp; \ __asm__ __volatile__ ("movec %%cacr,%0\n\t" \ "orw %1,%0\n\t" \ "movec %0,%%cacr" \ : "=&d" (_tmp) \ : "di" (FLUSH_I_AND_D)); \ } \ } while (0) #define __flush_cache_030() \ do { \ if (CPU_IS_020_OR_030) { \ unsigned long _tmp; \ __asm__ __volatile__ ("movec %%cacr,%0\n\t" \ "orw %1,%0\n\t" \ "movec %0,%%cacr" \ : "=&d" (_tmp) \ : "di" (FLUSH_I_AND_D)); \ } \ } while (0) #define flush_cache_all() __flush_cache_all() extern inline void flush_cache_mm(struct mm_struct *mm) { if (mm == current->mm) __flush_cache_030(); } extern inline void flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm == current->mm) __flush_cache_030(); } extern inline void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr) { if (vma->vm_mm == current->mm) __flush_cache_030(); } /* Push the page at kernel virtual address and clear the icache */ extern inline void flush_page_to_ram (unsigned long address) { if (CPU_IS_040_OR_060) { __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushp %%dc,(%0)\n\t" "cinvp %%ic,(%0)\n\t" ".chip 68k" : : "a" (virt_to_phys((void *)address))); } else { unsigned long _tmp; __asm volatile ("movec %%cacr,%0\n\t" "orw %1,%0\n\t" "movec %0,%%cacr" : "=&d" (_tmp) : "di" (FLUSH_I)); } } /* Push n pages at kernel virtual address and clear the icache */ extern inline void flush_icache_range (unsigned long address, unsigned long endaddr) { if (CPU_IS_040_OR_060) { short n = (endaddr - address + PAGE_SIZE - 1) / PAGE_SIZE; while (n--) { __asm__ __volatile__ ("nop\n\t" ".chip 68040\n\t" "cpushp %%dc,(%0)\n\t" "cinvp %%ic,(%0)\n\t" ".chip 68k" : : "a" (virt_to_phys((void *)address))); address += PAGE_SIZE; } } else { unsigned long _tmp; __asm volatile ("movec %%cacr,%0\n\t" "orw %1,%0\n\t" "movec %0,%%cacr" : "=&d" (_tmp) : "di" (FLUSH_I)); } } /* * flush all user-space atc entries. */ static inline void __flush_tlb(void) { if (CPU_IS_040_OR_060) __asm__ __volatile__(".chip 68040\n\t" "pflushan\n\t" ".chip 68k"); else __asm__ __volatile__("pflush #0,#4"); } static inline void __flush_tlb_one(unsigned long addr) { if (CPU_IS_040_OR_060) { __asm__ __volatile__(".chip 68040\n\t" "pflush (%0)\n\t" ".chip 68k" : : "a" (addr)); } else __asm__ __volatile__("pflush #0,#4,(%0)" : : "a" (addr)); } #define flush_tlb() __flush_tlb() /* * flush all atc entries (both kernel and user-space entries). */ static inline void flush_tlb_all(void) { if (CPU_IS_040_OR_060) __asm__ __volatile__(".chip 68040\n\t" "pflusha\n\t" ".chip 68k"); else __asm__ __volatile__("pflusha"); } static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->mm) __flush_tlb(); } static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { if (vma->vm_mm == current->mm) __flush_tlb_one(addr); } static inline void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm == current->mm) __flush_tlb(); } extern inline void flush_tlb_kernel_page(unsigned long addr) { if (CPU_IS_040_OR_060) { mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); __asm__ __volatile__(".chip 68040\n\t" "pflush (%0)\n\t" ".chip 68k" : : "a" (addr)); set_fs(old_fs); } else __asm__ __volatile__("pflush #4,#4,(%0)" : : "a" (addr)); } /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) \ do{ \ *(pteptr) = (pteval); \ } while(0) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 25 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the m68k is configured as three-level, * so we do have PMD level physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 8 #define PTRS_PER_PGD 128 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) /* Virtual address region for use by kernel_map() */ #define KMAP_START 0xd0000000 #define KMAP_END 0xf0000000 /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END KMAP_START #endif /* __ASSEMBLY__ */ /* * Definitions for MMU descriptors */ #define _PAGE_PRESENT 0x001 #define _PAGE_SHORT 0x002 #define _PAGE_RONLY 0x004 #define _PAGE_ACCESSED 0x008 #define _PAGE_DIRTY 0x010 #define _PAGE_SUPER 0x080 /* 68040 supervisor only */ #define _PAGE_FAKE_SUPER 0x200 /* fake supervisor only on 680[23]0 */ #define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */ #define _PAGE_COW 0x800 /* implemented in software */ #define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */ #define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */ #define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */ #define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */ #define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */ /* Page protection values within PTE. */ #define SUN3_PAGE_VALID (0x80000000) #define SUN3_PAGE_WRITEABLE (0x40000000) #define SUN3_PAGE_SYSTEM (0x20000000) #define SUN3_PAGE_NOCACHE (0x10000000) #define SUN3_PAGE_ACCESSED (0x02000000) #define SUN3_PAGE_MODIFIED (0x01000000) #define _DESCTYPE_MASK 0x003 #define _CACHEMASK040 (~0x060) #define _TABLE_MASK (0xfffffe00) #define _PAGE_TABLE (_PAGE_SHORT) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE) #ifndef __ASSEMBLY__ /* This is the cache mode to be used for pages containing page descriptors for * processors >= '040. It is in pte_mknocache(), and the variable is defined * and initialized in head.S */ extern int m68k_pgtable_cachemode; /* This is the cache mode for normal pages, for supervisor access on * processors >= '040. It is used in pte_mkcache(), and the variable is * defined and initialized in head.S */ #if defined(CONFIG_060_WRITETHROUGH) extern int m68k_supervisor_cachemode; #else #define m68k_supervisor_cachemode _PAGE_CACHE040 #endif #if defined(CPU_M68040_OR_M68060_ONLY) #define mm_cachebits _PAGE_CACHE040 #elif defined(CPU_M68020_OR_M68030_ONLY) #define mm_cachebits 0 #else extern unsigned long mm_cachebits; #endif #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits) /* Alternate definitions that are compile time constants, for initializing protection_map. The cachebits are fixed later. */ #define PAGE_NONE_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) #define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) #define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) /* * The m68k can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */ #define __P000 PAGE_NONE_C #define __P001 PAGE_READONLY_C #define __P010 PAGE_COPY_C #define __P011 PAGE_COPY_C #define __P100 PAGE_READONLY_C #define __P101 PAGE_READONLY_C #define __P110 PAGE_COPY_C #define __P111 PAGE_COPY_C #define __S000 PAGE_NONE_C #define __S001 PAGE_READONLY_C #define __S010 PAGE_SHARED_C #define __S011 PAGE_SHARED_C #define __S100 PAGE_READONLY_C #define __S101 PAGE_READONLY_C #define __S110 PAGE_SHARED_C #define __S111 PAGE_SHARED_C /* zero page used for uninitialized stuff */ extern unsigned long empty_zero_page; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) empty_zero_page /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ /* 64-bit machines, beware! SRB. */ #define SIZEOF_PTR_LOG2 2 /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) \ ({ pte_t __pte; pte_val(__pte) = virt_to_phys((void *)page) + pgprot_val(pgprot); __pte; }) #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; pte_val(__pte) = (unsigned long)physpage + pgprot_val(pgprot); __pte; }) extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { int i; unsigned long ptbl; ptbl = virt_to_phys(ptep) | _PAGE_TABLE | _PAGE_ACCESSED; for (i = 0; i < 16; i++, ptbl += (sizeof(pte_t)*PTRS_PER_PTE/16)) pmdp->pmd[i] = ptbl; } extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = _PAGE_TABLE | _PAGE_ACCESSED | virt_to_phys(pmdp); } extern inline unsigned long pte_page(pte_t pte) { return (unsigned long)phys_to_virt(pte_val(pte) & PAGE_MASK); } extern inline unsigned long pmd_page2(pmd_t *pmd) { return (unsigned long)phys_to_virt(pmd_val(*pmd) & _TABLE_MASK); } #define pmd_page(pmd) pmd_page2(&(pmd)) extern inline unsigned long pgd_page(pgd_t pgd) { return (unsigned long)phys_to_virt(pgd_val(pgd) & _TABLE_MASK); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & (_PAGE_PRESENT | _PAGE_FAKE_SUPER); } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } extern inline int pmd_none2(pmd_t *pmd) { return !pmd_val(*pmd); } #define pmd_none(pmd) pmd_none2(&(pmd)) extern inline int pmd_bad2(pmd_t *pmd) { return (pmd_val(*pmd) & _DESCTYPE_MASK) != _PAGE_TABLE; } #define pmd_bad(pmd) pmd_bad2(&(pmd)) extern inline int pmd_present2(pmd_t *pmd) { return pmd_val(*pmd) & _PAGE_TABLE; } #define pmd_present(pmd) pmd_present2(&(pmd)) extern inline void pmd_clear(pmd_t * pmdp) { short i; for (i = 15; i >= 0; i--) pmdp->pmd[i] = 0; } extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); } extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE; } extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_TABLE; } extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return 1; } extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); } extern inline int pte_exec(pte_t pte) { return 1; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { return pte; } extern inline pte_t pte_exprotect(pte_t pte) { return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; } extern inline pte_t pte_mkread(pte_t pte) { return pte; } extern inline pte_t pte_mkexec(pte_t pte) { return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } extern inline pte_t pte_mknocache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode; return pte; } extern inline pte_t pte_mkcache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_supervisor_cachemode; return pte; } #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) /* to find an entry in a page-table-directory */ extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> PGDIR_SHIFT); } #define swapper_pg_dir kernel_pg_dir extern pgd_t kernel_pg_dir[128]; extern inline pgd_t * pgd_offset_k(unsigned long address) { return kernel_pg_dir + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1)); } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address) { return (pte_t *) pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ /* Prior to calling these routines, the page should have been flushed * from both the cache and ATC, or the CPU might not notice that the * cache setting for the page has been changed. -jskov */ static inline void nocache_page (unsigned long vaddr) { if (CPU_IS_040_OR_060) { pgd_t *dir; pmd_t *pmdp; pte_t *ptep; dir = pgd_offset_k(vaddr); pmdp = pmd_offset(dir,vaddr); ptep = pte_offset(pmdp,vaddr); *ptep = pte_mknocache(*ptep); } } static inline void cache_page (unsigned long vaddr) { if (CPU_IS_040_OR_060) { pgd_t *dir; pmd_t *pmdp; pte_t *ptep; dir = pgd_offset_k(vaddr); pmdp = pmd_offset(dir,vaddr); ptep = pte_offset(pmdp,vaddr); *ptep = pte_mkcache(*ptep); } } extern struct pgtable_cache_struct { unsigned long *pmd_cache; unsigned long *pte_cache; /* This counts in units of pointer tables, of which can be eight per page. */ unsigned long pgtable_cache_sz; } quicklists; #define pgd_quicklist ((unsigned long *)0) #define pmd_quicklist (quicklists.pmd_cache) #define pte_quicklist (quicklists.pte_cache) /* This isn't accurate because of fragmentation of allocated pages for pointer tables, but that should not be a problem. */ #define pgtable_cache_size ((quicklists.pgtable_cache_sz+7)/8) extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset); extern pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long offset); extern pmd_t *get_pointer_table(void); extern int free_pointer_table(pmd_t *); extern __inline__ pte_t *get_pte_fast(void) { unsigned long *ret; ret = pte_quicklist; if (ret) { pte_quicklist = (unsigned long *)*ret; ret[0] = 0; quicklists.pgtable_cache_sz -= 8; } return (pte_t *)ret; } extern __inline__ void free_pte_fast(pte_t *pte) { *(unsigned long *)pte = (unsigned long)pte_quicklist; pte_quicklist = (unsigned long *)pte; quicklists.pgtable_cache_sz += 8; } extern __inline__ void free_pte_slow(pte_t *pte) { cache_page((unsigned long)pte); free_page((unsigned long) pte); } extern __inline__ pmd_t *get_pmd_fast(void) { unsigned long *ret; ret = pmd_quicklist; if (ret) { pmd_quicklist = (unsigned long *)*ret; ret[0] = 0; quicklists.pgtable_cache_sz--; } return (pmd_t *)ret; } extern __inline__ void free_pmd_fast(pmd_t *pmd) { *(unsigned long *)pmd = (unsigned long)pmd_quicklist; pmd_quicklist = (unsigned long *) pmd; quicklists.pgtable_cache_sz++; } extern __inline__ int free_pmd_slow(pmd_t *pmd) { return free_pointer_table(pmd); } /* The pgd cache is folded into the pmd cache, so these are dummy routines. */ extern __inline__ pgd_t *get_pgd_fast(void) { return (pgd_t *)0; } extern __inline__ void free_pgd_fast(pgd_t *pgd) { } extern __inline__ void free_pgd_slow(pgd_t *pgd) { } extern void __bad_pte(pmd_t *pmd); extern void __bad_pmd(pgd_t *pgd); extern inline void pte_free(pte_t * pte) { free_pte_fast(pte); } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = get_pte_fast(); if (!page) return get_pte_slow(pmd, address); pmd_set(pmd,page); return page + address; } if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline void pmd_free(pmd_t * pmd) { free_pmd_fast(pmd); } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); if (pgd_none(*pgd)) { pmd_t *page = get_pmd_fast(); if (!page) return get_pmd_slow(pgd, address); pgd_set(pgd, page); return page + address; } if (pgd_bad(*pgd)) { __bad_pmd(pgd); return NULL; } return (pmd_t *) pgd_page(*pgd) + address; } extern inline void pte_free_kernel(pte_t * pte) { free_pte_fast(pte); } extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { return pte_alloc(pmd, address); } extern inline void pmd_free_kernel(pmd_t * pmd) { free_pmd_fast(pmd); } extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address) { return pmd_alloc(pgd, address); } extern inline void pgd_free(pgd_t * pgd) { free_pmd_fast((pmd_t *)pgd); } extern inline pgd_t * pgd_alloc(void) { pgd_t *pgd = (pgd_t *)get_pmd_fast(); if (!pgd) pgd = (pgd_t *)get_pointer_table(); return pgd; } extern int do_check_pgt_cache(int, int); extern inline void set_pgdir(unsigned long address, pgd_t entry) { } /* * Check if the addr/len goes up to the end of a physical * memory chunk. Used for DMA functions. */ #ifdef CONFIG_SINGLE_MEMORY_CHUNK /* * It makes no sense to consider whether we cross a memory boundary if * we support just one physical chunk of memory. */ extern inline int mm_end_of_chunk (unsigned long addr, int len) { return 0; } #else int mm_end_of_chunk (unsigned long addr, int len); #endif extern void kernel_set_cachemode(void *addr, unsigned long size, int cmode); /* * The m68k doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } /* * I don't know what is going on here, but since these were changed, * swapping hasn't been working on the 68040. */ /* With the new handling of PAGE_NONE the old definitions definitely don't work any more. */ #define SWP_TYPE(entry) (((entry) >> 2) & 0x7f) #if 0 #define SWP_OFFSET(entry) ((entry) >> 9) #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9)) #else #define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT) #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << PAGE_SHIFT)) #endif #endif /* __ASSEMBLY__ */ #define module_map vmalloc #define module_unmap vfree /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) #define io_remap_page_range remap_page_range #endif /* _M68K_PGTABLE_H */ |