Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | /* $Id: uaccess.h,v 1.31 1999/07/30 09:31:24 davem Exp $ */ #ifndef _ASM_UACCESS_H #define _ASM_UACCESS_H /* * User space memory access functions */ #ifdef __KERNEL__ #include <linux/sched.h> #include <linux/string.h> #include <asm/a.out.h> #include <asm/asi.h> #include <asm/system.h> #include <asm/spitfire.h> #endif #ifndef __ASSEMBLY__ /* * Sparc64 is segmented, though more like the M68K than the I386. * We use the secondary ASI to address user memory, which references a * completely different VM map, thus there is zero chance of the user * doing something queer and tricking us into poking kernel memory. * * What is left here is basically what is needed for the other parts of * the kernel that expect to be able to manipulate, erum, "segments". * Or perhaps more properly, permissions. * * "For historical reasons, these macros are grossly misnamed." -Linus */ #define KERNEL_DS ((mm_segment_t) { ASI_P }) #define USER_DS ((mm_segment_t) { ASI_AIUS }) /* har har har */ #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define get_fs() (current->thread.current_ds) #define get_ds() (KERNEL_DS) #define segment_eq(a,b) ((a).seg == (b).seg) #define set_fs(val) \ do { \ current->thread.current_ds = (val); \ __asm__ __volatile__ ("wr %%g0, %0, %%asi" : : "r" ((val).seg)); \ } while(0) #define __user_ok(addr,size) 1 #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) #define __access_ok(addr,size) 1 #define access_ok(type,addr,size) 1 extern inline int verify_area(int type, const void * addr, unsigned long size) { return 0; } /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. * * There is a special way how to put a range of potentially faulting * insns (like twenty ldd/std's with now intervening other instructions) * You specify address of first in insn and 0 in fixup and in the next * exception_table_entry you specify last potentially faulting insn + 1 * and in fixup the routine which should handle the fault. * That fixup code will get * (faulting_insn_address - first_insn_in_the_range_address)/4 * in %g2 (ie. index of the faulting instruction in the range). */ struct exception_table_entry { unsigned insn, fixup; }; /* Returns 0 if exception not found and fixup otherwise. */ extern unsigned long search_exception_table(unsigned long, unsigned long *); extern void __ret_efault(void); /* Uh, these should become the main single-value transfer routines.. * They automatically use the right size if we just have the right * pointer type.. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the uglyness from the user. */ #define put_user(x,ptr) ({ \ unsigned long __pu_addr = (unsigned long)(ptr); \ __put_user_nocheck((__typeof__(*(ptr)))(x),__pu_addr,sizeof(*(ptr))); }) #define put_user_ret(x,ptr,retval) ({ \ unsigned long __pu_addr = (unsigned long)(ptr); \ __put_user_nocheck_ret((__typeof__(*(ptr)))(x),__pu_addr,sizeof(*(ptr)),retval); }) #define get_user(x,ptr) ({ \ unsigned long __gu_addr = (unsigned long)(ptr); \ __get_user_nocheck((x),__gu_addr,sizeof(*(ptr)),__typeof__(*(ptr))); }) #define get_user_ret(x,ptr,retval) ({ \ unsigned long __gu_addr = (unsigned long)(ptr); \ __get_user_nocheck_ret((x),__gu_addr,sizeof(*(ptr)),__typeof__(*(ptr)),retval); }) #define __put_user(x,ptr) put_user(x,ptr) #define __put_user_ret(x,ptr,retval) put_user_ret(x,ptr,retval) #define __get_user(x,ptr) get_user(x,ptr) #define __get_user_ret(x,ptr,retval) get_user_ret(x,ptr,retval) struct __large_struct { unsigned long buf[100]; }; #define __m(x) ((struct __large_struct *)(x)) #define __put_user_nocheck(data,addr,size) ({ \ register int __pu_ret; \ switch (size) { \ case 1: __put_user_asm(data,b,addr,__pu_ret); break; \ case 2: __put_user_asm(data,h,addr,__pu_ret); break; \ case 4: __put_user_asm(data,w,addr,__pu_ret); break; \ case 8: __put_user_asm(data,x,addr,__pu_ret); break; \ default: __pu_ret = __put_user_bad(); break; \ } __pu_ret; }) #define __put_user_nocheck_ret(data,addr,size,retval) ({ \ register int __foo __asm__ ("l1"); \ switch (size) { \ case 1: __put_user_asm_ret(data,b,addr,retval,__foo); break; \ case 2: __put_user_asm_ret(data,h,addr,retval,__foo); break; \ case 4: __put_user_asm_ret(data,w,addr,retval,__foo); break; \ case 8: __put_user_asm_ret(data,x,addr,retval,__foo); break; \ default: if (__put_user_bad()) return retval; break; \ } }) #define __put_user_asm(x,size,addr,ret) \ __asm__ __volatile__( \ "/* Put user asm, inline. */\n" \ "1:\t" "st"#size "a %1, [%2] %%asi\n\t" \ "clr %0\n" \ "2:\n\n\t" \ ".section .fixup,#alloc,#execinstr\n\t" \ ".align 4\n" \ "3:\n\t" \ "b 2b\n\t" \ " mov %3, %0\n\n\t" \ ".previous\n\t" \ ".section __ex_table,#alloc\n\t" \ ".align 4\n\t" \ ".word 1b, 3b\n\t" \ ".previous\n\n\t" \ : "=r" (ret) : "r" (x), "r" (__m(addr)), \ "i" (-EFAULT)) #define __put_user_asm_ret(x,size,addr,ret,foo) \ if (__builtin_constant_p(ret) && ret == -EFAULT) \ __asm__ __volatile__( \ "/* Put user asm ret, inline. */\n" \ "1:\t" "st"#size "a %1, [%2] %%asi\n\n\t" \ ".section __ex_table,#alloc\n\t" \ ".align 4\n\t" \ ".word 1b, __ret_efault\n\n\t" \ ".previous\n\n\t" \ : "=r" (foo) : "r" (x), "r" (__m(addr))); \ else \ __asm__ __volatile( \ "/* Put user asm ret, inline. */\n" \ "1:\t" "st"#size "a %1, [%2] %%asi\n\n\t" \ ".section .fixup,#alloc,#execinstr\n\t" \ ".align 4\n" \ "3:\n\t" \ "ret\n\t" \ " restore %%g0, %3, %%o0\n\n\t" \ ".previous\n\t" \ ".section __ex_table,#alloc\n\t" \ ".align 4\n\t" \ ".word 1b, 3b\n\n\t" \ ".previous\n\n\t" \ : "=r" (foo) : "r" (x), "r" (__m(addr)), \ "i" (ret)) extern int __put_user_bad(void); #define __get_user_nocheck(data,addr,size,type) ({ \ register int __gu_ret; \ register unsigned long __gu_val; \ switch (size) { \ case 1: __get_user_asm(__gu_val,ub,addr,__gu_ret); break; \ case 2: __get_user_asm(__gu_val,uh,addr,__gu_ret); break; \ case 4: __get_user_asm(__gu_val,uw,addr,__gu_ret); break; \ case 8: __get_user_asm(__gu_val,x,addr,__gu_ret); break; \ default: __gu_val = 0; __gu_ret = __get_user_bad(); break; \ } data = (type) __gu_val; __gu_ret; }) #define __get_user_nocheck_ret(data,addr,size,type,retval) ({ \ register unsigned long __gu_val __asm__ ("l1"); \ switch (size) { \ case 1: __get_user_asm_ret(__gu_val,ub,addr,retval); break; \ case 2: __get_user_asm_ret(__gu_val,uh,addr,retval); break; \ case 4: __get_user_asm_ret(__gu_val,uw,addr,retval); break; \ case 8: __get_user_asm_ret(__gu_val,x,addr,retval); break; \ default: if (__get_user_bad()) return retval; \ } data = (type) __gu_val; }) #define __get_user_asm(x,size,addr,ret) \ __asm__ __volatile__( \ "/* Get user asm, inline. */\n" \ "1:\t" "ld"#size "a [%2] %%asi, %1\n\t" \ "clr %0\n" \ "2:\n\n\t" \ ".section .fixup,#alloc,#execinstr\n\t" \ ".align 4\n" \ "3:\n\t" \ "clr %1\n\t" \ "b 2b\n\t" \ " mov %3, %0\n\n\t" \ ".previous\n\t" \ ".section __ex_table,#alloc\n\t" \ ".align 4\n\t" \ ".word 1b, 3b\n\n\t" \ ".previous\n\t" \ : "=r" (ret), "=r" (x) : "r" (__m(addr)), \ "i" (-EFAULT)) #define __get_user_asm_ret(x,size,addr,retval) \ if (__builtin_constant_p(retval) && retval == -EFAULT) \ __asm__ __volatile__( \ "/* Get user asm ret, inline. */\n" \ "1:\t" "ld"#size "a [%1] %%asi, %0\n\n\t" \ ".section __ex_table,#alloc\n\t" \ ".align 4\n\t" \ ".word 1b,__ret_efault\n\n\t" \ ".previous\n\t" \ : "=r" (x) : "r" (__m(addr))); \ else \ __asm__ __volatile__( \ "/* Get user asm ret, inline. */\n" \ "1:\t" "ld"#size "a [%1] %%asi, %0\n\n\t" \ ".section .fixup,#alloc,#execinstr\n\t" \ ".align 4\n" \ "3:\n\t" \ "ret\n\t" \ " restore %%g0, %2, %%o0\n\n\t" \ ".previous\n\t" \ ".section __ex_table,#alloc\n\t" \ ".align 4\n\t" \ ".word 1b, 3b\n\n\t" \ ".previous\n\t" \ : "=r" (x) : "r" (__m(addr)), "i" (retval)) extern int __get_user_bad(void); extern __kernel_size_t __memcpy_short(void *to, const void *from, __kernel_size_t size, long asi_src, long asi_dst); extern __kernel_size_t __memcpy_entry(void *to, const void *from, __kernel_size_t size, long asi_src, long asi_dst); extern __kernel_size_t __memcpy_16plus(void *to, const void *from, __kernel_size_t size, long asi_src, long asi_dst); extern __kernel_size_t __memcpy_386plus(void *to, const void *from, __kernel_size_t size, long asi_src, long asi_dst); extern __kernel_size_t __copy_from_user(void *to, const void *from, __kernel_size_t size); extern __kernel_size_t __copy_to_user(void *to, const void *from, __kernel_size_t size); extern __kernel_size_t __copy_in_user(void *to, const void *from, __kernel_size_t size); #define copy_from_user(to,from,n) \ __copy_from_user((void *)(to), \ (void *)(from), (__kernel_size_t)(n)) #define copy_from_user_ret(to,from,n,retval) ({ \ if (copy_from_user(to,from,n)) \ return retval; \ }) #define __copy_from_user_ret(to,from,n,retval) ({ \ if (__copy_from_user(to,from,n)) \ return retval; \ }) #define copy_to_user(to,from,n) \ __copy_to_user((void *)(to), \ (void *) (from), (__kernel_size_t)(n)) #define copy_to_user_ret(to,from,n,retval) ({ \ if (copy_to_user(to,from,n)) \ return retval; \ }) #define __copy_to_user_ret(to,from,n,retval) ({ \ if (__copy_to_user(to,from,n)) \ return retval; \ }) #define copy_in_user(to,from,n) \ __copy_in_user((void *)(to), \ (void *) (from), (__kernel_size_t)(n)) #define copy_in_user_ret(to,from,n,retval) ({ \ if (copy_in_user(to,from,n)) \ return retval; \ }) #define __copy_in_user_ret(to,from,n,retval) ({ \ if (__copy_in_user(to,from,n)) \ return retval; \ }) extern __inline__ __kernel_size_t __clear_user(void *addr, __kernel_size_t size) { extern __kernel_size_t __bzero_noasi(void *addr, __kernel_size_t size); return __bzero_noasi(addr, size); } #define clear_user(addr,n) \ __clear_user((void *)(addr), (__kernel_size_t)(n)) #define clear_user_ret(addr,size,retval) ({ \ if (clear_user(addr,size)) \ return retval; \ }) extern int __strncpy_from_user(unsigned long dest, unsigned long src, int count); #define strncpy_from_user(dest,src,count) \ __strncpy_from_user((unsigned long)(dest), (unsigned long)(src), (int)(count)) extern int __strlen_user(const char *); #define strlen_user __strlen_user #endif /* __ASSEMBLY__ */ #endif /* _ASM_UACCESS_H */ |