Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#ifndef _M68K_PGTABLE_H
#define _M68K_PGTABLE_H

#include <linux/config.h>
#include <asm/setup.h>

#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <linux/tasks.h>

/*
 * This file contains the functions and defines necessary to modify and use
 * the m68k page table tree.
 */

#include <asm/virtconvert.h>

/*
 * Cache handling functions
 */

#define flush_icache()					\
do {							\
	if (CPU_IS_040_OR_060)				\
		asm __volatile__ ("nop\n\t"		\
				  ".chip 68040\n\t"	\
				  "cinva %%ic\n\t"	\
				  ".chip 68k" : );	\
	else {						\
		unsigned long _tmp;			\
		asm __volatile__ ("movec %%cacr,%0\n\t"	\
		     "orw %1,%0\n\t"			\
		     "movec %0,%%cacr"			\
		     : "=&d" (_tmp)			\
		     : "id" (FLUSH_I));			\
	}						\
} while (0)

/*
 * invalidate the cache for the specified memory range.
 * It starts at the physical address specified for
 * the given number of bytes.
 */
extern void cache_clear (unsigned long paddr, int len);
/*
 * push any dirty cache in the specified memory range.
 * It starts at the physical address specified for
 * the given number of bytes.
 */
extern void cache_push (unsigned long paddr, int len);

/*
 * push and invalidate pages in the specified user virtual
 * memory range.
 */
extern void cache_push_v (unsigned long vaddr, int len);

/* cache code */
#define FLUSH_I_AND_D	(0x00000808)
#define FLUSH_I 	(0x00000008)

/* This is needed whenever the virtual mapping of the current
   process changes.  */
#define __flush_cache_all()						\
    do {								\
	if (CPU_IS_040_OR_060)						\
		__asm__ __volatile__ ("nop\n\t"				\
				      ".chip 68040\n\t"			\
				      "cpusha %dc\n\t"			\
				      ".chip 68k");			\
	else {								\
		unsigned long _tmp;					\
		__asm__ __volatile__ ("movec %%cacr,%0\n\t"		\
				      "orw %1,%0\n\t"			\
				      "movec %0,%%cacr"			\
				      : "=&d" (_tmp)			\
				      : "di" (FLUSH_I_AND_D));		\
	}								\
    } while (0)

#define __flush_cache_030()						\
    do {								\
	if (CPU_IS_020_OR_030) {					\
		unsigned long _tmp;					\
		__asm__ __volatile__ ("movec %%cacr,%0\n\t"		\
				      "orw %1,%0\n\t"			\
				      "movec %0,%%cacr"			\
				      : "=&d" (_tmp)			\
				      : "di" (FLUSH_I_AND_D));		\
	}								\
    } while (0)

#define flush_cache_all() __flush_cache_all()

extern inline void flush_cache_mm(struct mm_struct *mm)
{
	if (mm == current->mm)
		__flush_cache_030();
}

extern inline void flush_cache_range(struct mm_struct *mm,
				     unsigned long start,
				     unsigned long end)
{
	if (mm == current->mm)
	        __flush_cache_030();
}

extern inline void flush_cache_page(struct vm_area_struct *vma,
				    unsigned long vmaddr)
{
	if (vma->vm_mm == current->mm)
	        __flush_cache_030();
}

/* Push the page at kernel virtual address and clear the icache */
extern inline void flush_page_to_ram (unsigned long address)
{
    if (CPU_IS_040_OR_060) {
	__asm__ __volatile__ ("nop\n\t"
			      ".chip 68040\n\t"
			      "cpushp %%dc,(%0)\n\t"
			      "cinvp %%ic,(%0)\n\t"
			      ".chip 68k"
			      : : "a" (virt_to_phys((void *)address)));
    }
    else {
	unsigned long _tmp;
	__asm volatile ("movec %%cacr,%0\n\t"
			"orw %1,%0\n\t"
			"movec %0,%%cacr"
			: "=&d" (_tmp)
			: "di" (FLUSH_I));
    }
}

/* Push n pages at kernel virtual address and clear the icache */
extern inline void flush_icache_range (unsigned long address,
				       unsigned long endaddr)
{
    if (CPU_IS_040_OR_060) {
	short n = (endaddr - address + PAGE_SIZE - 1) / PAGE_SIZE;

	while (n--) {
	    __asm__ __volatile__ ("nop\n\t"
				  ".chip 68040\n\t"
				  "cpushp %%dc,(%0)\n\t"
				  "cinvp %%ic,(%0)\n\t"
				  ".chip 68k"
				  : : "a" (virt_to_phys((void *)address)));
	    address += PAGE_SIZE;
	}
    }
    else {
	unsigned long _tmp;
	__asm volatile ("movec %%cacr,%0\n\t"
			"orw %1,%0\n\t"
			"movec %0,%%cacr"
			: "=&d" (_tmp)
			: "di" (FLUSH_I));
    }
}


/*
 * flush all user-space atc entries.
 */
static inline void __flush_tlb(void)
{
	if (CPU_IS_040_OR_060)
		__asm__ __volatile__(".chip 68040\n\t"
				     "pflushan\n\t"
				     ".chip 68k");
	else
		__asm__ __volatile__("pflush #0,#4");
}

static inline void __flush_tlb_one(unsigned long addr)
{
	if (CPU_IS_040_OR_060) {
		__asm__ __volatile__(".chip 68040\n\t"
				     "pflush (%0)\n\t"
				     ".chip 68k"
				     : : "a" (addr));
	} else
		__asm__ __volatile__("pflush #0,#4,(%0)" : : "a" (addr));
}

#define flush_tlb() __flush_tlb()

/*
 * flush all atc entries (both kernel and user-space entries).
 */
static inline void flush_tlb_all(void)
{
	if (CPU_IS_040_OR_060)
		__asm__ __volatile__(".chip 68040\n\t"
				     "pflusha\n\t"
				     ".chip 68k");
	else
		__asm__ __volatile__("pflusha");
}

static inline void flush_tlb_mm(struct mm_struct *mm)
{
	if (mm == current->mm)
		__flush_tlb();
}

static inline void flush_tlb_page(struct vm_area_struct *vma,
	unsigned long addr)
{
	if (vma->vm_mm == current->mm)
		__flush_tlb_one(addr);
}

static inline void flush_tlb_range(struct mm_struct *mm,
	unsigned long start, unsigned long end)
{
	if (mm == current->mm)
		__flush_tlb();
}

extern inline void flush_tlb_kernel_page(unsigned long addr)
{
	if (CPU_IS_040_OR_060) {
		mm_segment_t old_fs = get_fs();
		set_fs(KERNEL_DS);
		__asm__ __volatile__(".chip 68040\n\t"
				     "pflush (%0)\n\t"
				     ".chip 68k"
				     : : "a" (addr));
		set_fs(old_fs);
	} else
		__asm__ __volatile__("pflush #4,#4,(%0)" : : "a" (addr));
}

/* Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
#define set_pte(pteptr, pteval)					\
	do{							\
		*(pteptr) = (pteval);				\
	} while(0)


/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT	22
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT	25
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/*
 * entries per page directory level: the m68k is configured as three-level,
 * so we do have PMD level physically.
 */
#define PTRS_PER_PTE	1024
#define PTRS_PER_PMD	8
#define PTRS_PER_PGD	128
#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)

/* the no. of pointers that fit on a page: this will go away */
#define PTRS_PER_PAGE	(PAGE_SIZE/sizeof(void*))

typedef pgd_t pgd_table[PTRS_PER_PGD];
typedef pmd_t pmd_table[PTRS_PER_PMD];
typedef pte_t pte_table[PTRS_PER_PTE];

#define PGD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pgd_table))
#define PMD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pmd_table))
#define PTE_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pte_table))

typedef pgd_table pgd_tablepage[PGD_TABLES_PER_PAGE];
typedef pmd_table pmd_tablepage[PMD_TABLES_PER_PAGE];
typedef pte_table pte_tablepage[PTE_TABLES_PER_PAGE];

/* Virtual address region for use by kernel_map() */
#define	KMAP_START	0xd0000000
#define	KMAP_END	0xf0000000

/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET	(8*1024*1024)
#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END KMAP_START

#endif /* __ASSEMBLY__ */

/*
 * Definitions for MMU descriptors
 */
#define _PAGE_PRESENT	0x001
#define _PAGE_SHORT	0x002
#define _PAGE_RONLY	0x004
#define _PAGE_ACCESSED	0x008
#define _PAGE_DIRTY	0x010
#define _PAGE_SUPER	0x080	/* 68040 supervisor only */
#define _PAGE_FAKE_SUPER 0x200	/* fake supervisor only on 680[23]0 */
#define _PAGE_GLOBAL040	0x400	/* 68040 global bit, used for kva descs */
#define _PAGE_COW	0x800	/* implemented in software */
#define _PAGE_NOCACHE030 0x040	/* 68030 no-cache mode */
#define _PAGE_NOCACHE	0x060	/* 68040 cache mode, non-serialized */
#define _PAGE_NOCACHE_S	0x040	/* 68040 no-cache mode, serialized */
#define _PAGE_CACHE040	0x020	/* 68040 cache mode, cachable, copyback */
#define _PAGE_CACHE040W	0x000	/* 68040 cache mode, cachable, write-through */

#define _DESCTYPE_MASK	0x003

#define _CACHEMASK040	(~0x060)
#define _TABLE_MASK	(0xfffffe00)

#define _PAGE_TABLE	(_PAGE_SHORT)
#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE)

#ifndef __ASSEMBLY__

/* This is the cache mode to be used for pages containing page descriptors for
 * processors >= '040. It is in pte_mknocache(), and the variable is defined
 * and initialized in head.S */
extern int m68k_pgtable_cachemode;

/* This is the cache mode for normal pages, for supervisor access on
 * processors >= '040. It is used in pte_mkcache(), and the variable is
 * defined and initialized in head.S */

#if defined(CONFIG_060_WRITETHROUGH)
extern int m68k_supervisor_cachemode;
#else
#define m68k_supervisor_cachemode _PAGE_CACHE040
#endif

#if defined(CPU_M68040_OR_M68060_ONLY)
#define mm_cachebits _PAGE_CACHE040
#elif defined(CPU_M68020_OR_M68030_ONLY)
#define mm_cachebits 0
#else
extern unsigned long mm_cachebits;
#endif

#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits)

/* Alternate definitions that are compile time constants, for
   initializing protection_map.  The cachebits are fixed later.  */
#define PAGE_NONE_C	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
#define PAGE_SHARED_C	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_COPY_C	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
#define PAGE_READONLY_C	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)

/*
 * The m68k can't do page protection for execute, and considers that the same are read.
 * Also, write permissions imply read permissions. This is the closest we can get..
 */
#define __P000	PAGE_NONE_C
#define __P001	PAGE_READONLY_C
#define __P010	PAGE_COPY_C
#define __P011	PAGE_COPY_C
#define __P100	PAGE_READONLY_C
#define __P101	PAGE_READONLY_C
#define __P110	PAGE_COPY_C
#define __P111	PAGE_COPY_C

#define __S000	PAGE_NONE_C
#define __S001	PAGE_READONLY_C
#define __S010	PAGE_SHARED_C
#define __S011	PAGE_SHARED_C
#define __S100	PAGE_READONLY_C
#define __S101	PAGE_READONLY_C
#define __S110	PAGE_SHARED_C
#define __S111	PAGE_SHARED_C

/* zero page used for uninitialized stuff */
extern unsigned long empty_zero_page;

/*
 * BAD_PAGETABLE is used when we need a bogus page-table, while
 * BAD_PAGE is used for a bogus page.
 *
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);

#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE empty_zero_page

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))

/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware!  SRB. */
#define SIZEOF_PTR_LOG2			2

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define mk_pte(page, pgprot) \
({ pte_t __pte; pte_val(__pte) = virt_to_phys((void *)page) + pgprot_val(pgprot); __pte; })
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = (unsigned long)physpage + pgprot_val(pgprot); __pte; })

extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }

extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{
	int i;
	unsigned long ptbl;
	ptbl = virt_to_phys(ptep);
	for (i = 0; i < 16; i++, ptbl += sizeof(pte_table)/16)
		pmdp->pmd[i] = _PAGE_TABLE | _PAGE_ACCESSED | ptbl;
}

extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{ pgd_val(*pgdp) = _PAGE_TABLE | _PAGE_ACCESSED | virt_to_phys(pmdp); }

extern inline unsigned long pte_page(pte_t pte)
{ return (unsigned long)phys_to_virt(pte_val(pte) & PAGE_MASK); }

extern inline unsigned long pmd_page2(pmd_t *pmd)
{ return (unsigned long)phys_to_virt(pmd_val(*pmd) & _TABLE_MASK); }
#define pmd_page(pmd) pmd_page2(&(pmd))

extern inline unsigned long pgd_page(pgd_t pgd)
{ return (unsigned long)phys_to_virt(pgd_val(pgd) & _TABLE_MASK); }

extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & (_PAGE_PRESENT | _PAGE_FAKE_SUPER); }
extern inline void pte_clear(pte_t *ptep)	{ pte_val(*ptep) = 0; }

extern inline int pmd_none2(pmd_t *pmd)		{ return !pmd_val(*pmd); }
#define pmd_none(pmd) pmd_none2(&(pmd))
extern inline int pmd_bad2(pmd_t *pmd)		{ return (pmd_val(*pmd) & _DESCTYPE_MASK) != _PAGE_TABLE; }
#define pmd_bad(pmd) pmd_bad2(&(pmd))
extern inline int pmd_present2(pmd_t *pmd)	{ return pmd_val(*pmd) & _PAGE_TABLE; }
#define pmd_present(pmd) pmd_present2(&(pmd))
extern inline void pmd_clear(pmd_t * pmdp)
{
	short i;

	for (i = 15; i >= 0; i--)
		pmdp->pmd[i] = 0;
}

extern inline int pgd_none(pgd_t pgd)		{ return !pgd_val(pgd); }
extern inline int pgd_bad(pgd_t pgd)		{ return (pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE; }
extern inline int pgd_present(pgd_t pgd)	{ return pgd_val(pgd) & _PAGE_TABLE; }

extern inline void pgd_clear(pgd_t * pgdp)	{ pgd_val(*pgdp) = 0; }

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
extern inline int pte_read(pte_t pte)		{ return 1; }
extern inline int pte_write(pte_t pte)		{ return !(pte_val(pte) & _PAGE_RONLY); }
extern inline int pte_exec(pte_t pte)		{ return 1; }
extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }

extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) |= _PAGE_RONLY; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte)	{ return pte; }
extern inline pte_t pte_exprotect(pte_t pte)	{ return pte; }
extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) &= ~_PAGE_RONLY; return pte; }
extern inline pte_t pte_mkread(pte_t pte)	{ return pte; }
extern inline pte_t pte_mkexec(pte_t pte)	{ return pte; }
extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mknocache(pte_t pte)
{
	pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode;
	return pte;
}
extern inline pte_t pte_mkcache(pte_t pte)	{ pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_supervisor_cachemode; return pte; }

/* to set the page-dir */
extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir)
{
	tsk->tss.crp[0] = 0x80000000 | _PAGE_TABLE;
	tsk->tss.crp[1] = virt_to_phys(pgdir);
	if (tsk == current) {
		if (CPU_IS_040_OR_060)
			__asm__ __volatile__ (".chip 68040\n\t"
					      "pflushan\n\t"
					      "movec %0,%%urp\n\t"
					      ".chip 68k"
					      : : "r" (tsk->tss.crp[1]));
		else {
			unsigned long tmp;
			__asm__ __volatile__ ("movec  %%cacr,%0\n\t"
					      "orw #0x0808,%0\n\t"
					      "movec %0,%%cacr"
					      : "=d" (tmp));
			/* For a 030-only kernel, avoid flushing the whole
			   ATC, we only need to flush the user entries.
			   The 68851 does this by itself.  Avoid a runtime
			   check here.  */
			__asm__ __volatile__ (
#ifdef CPU_M68030_ONLY
					      ".chip 68030\n\t"
					      "pmovefd %0,%%crp\n\t"
					      ".chip 68k\n\t"
					      "pflush #0,#4"
#else
					      "pmove %0,%%crp"
#endif
					      : : "m" (tsk->tss.crp[0]));
		}
	}
}

#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))

/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
	return mm->pgd + (address >> PGDIR_SHIFT);
}

#define swapper_pg_dir kernel_pg_dir
extern pgd_t kernel_pg_dir[128];

extern inline pgd_t * pgd_offset_k(unsigned long address)
{
	return kernel_pg_dir + (address >> PGDIR_SHIFT);
}


/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
	return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1));
}

/* Find an entry in the third-level page table.. */ 
extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address)
{
	return (pte_t *) pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

/*
 * Allocate and free page tables. The xxx_kernel() versions are
 * used to allocate a kernel page table - this turns on ASN bits
 * if any.
 */

/* Prior to calling these routines, the page should have been flushed
 * from both the cache and ATC, or the CPU might not notice that the
 * cache setting for the page has been changed. -jskov
 */
static inline void nocache_page (unsigned long vaddr)
{
	if (CPU_IS_040_OR_060) {
		pgd_t *dir;
		pmd_t *pmdp;
		pte_t *ptep;

		dir = pgd_offset_k(vaddr);
		pmdp = pmd_offset(dir,vaddr);
		ptep = pte_offset(pmdp,vaddr);
		*ptep = pte_mknocache(*ptep);
	}
}

static inline void cache_page (unsigned long vaddr)
{
	if (CPU_IS_040_OR_060) {
		pgd_t *dir;
		pmd_t *pmdp;
		pte_t *ptep;

		dir = pgd_offset_k(vaddr);
		pmdp = pmd_offset(dir,vaddr);
		ptep = pte_offset(pmdp,vaddr);
		*ptep = pte_mkcache(*ptep);
	}
}

extern struct pgtable_cache_struct {
	unsigned long *pmd_cache;
	unsigned long *pte_cache;
/* This counts in units of pointer tables, of which can be eight per page. */
	unsigned long pgtable_cache_sz;
} quicklists;

#define pgd_quicklist ((unsigned long *)0)
#define pmd_quicklist (quicklists.pmd_cache)
#define pte_quicklist (quicklists.pte_cache)
/* This isn't accurate because of fragmentation of allocated pages for
   pointer tables, but that should not be a problem. */
#define pgtable_cache_size ((quicklists.pgtable_cache_sz+7)/8)

extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset);
extern pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long offset);

extern pmd_t *get_pointer_table(void);
extern int free_pointer_table(pmd_t *);

extern __inline__ pte_t *get_pte_fast(void)
{
	unsigned long *ret;

	ret = pte_quicklist;
	if (ret) {
		pte_quicklist = (unsigned long *)*ret;
		ret[0] = 0;
		quicklists.pgtable_cache_sz -= 8;
	}
	return (pte_t *)ret;
}

extern __inline__ void free_pte_fast(pte_t *pte)
{
	*(unsigned long *)pte = (unsigned long)pte_quicklist;
	pte_quicklist = (unsigned long *)pte;
	quicklists.pgtable_cache_sz += 8;
}

extern __inline__ void free_pte_slow(pte_t *pte)
{
	cache_page((unsigned long)pte);
	free_page((unsigned long) pte);
}

extern __inline__ pmd_t *get_pmd_fast(void)
{
	unsigned long *ret;

	ret = pmd_quicklist;
	if (ret) {
		pmd_quicklist = (unsigned long *)*ret;
		ret[0] = 0;
		quicklists.pgtable_cache_sz--;
	}
	return (pmd_t *)ret;
}

extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
	*(unsigned long *)pmd = (unsigned long)pmd_quicklist;
	pmd_quicklist = (unsigned long *) pmd;
	quicklists.pgtable_cache_sz++;
}

extern __inline__ int free_pmd_slow(pmd_t *pmd)
{
	return free_pointer_table(pmd);
}

/* The pgd cache is folded into the pmd cache, so these are dummy routines. */
extern __inline__ pgd_t *get_pgd_fast(void)
{
	return (pgd_t *)0;
}

extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
}

extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
}

extern void __bad_pte(pmd_t *pmd);
extern void __bad_pmd(pgd_t *pgd);

extern inline void pte_free(pte_t * pte)
{
	free_pte_fast(pte);
}

extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		pte_t * page = get_pte_fast();

		if (!page)
			return get_pte_slow(pmd, address);
		pmd_set(pmd,page);
		return page + address;
	}
	if (pmd_bad(*pmd)) {
		__bad_pte(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + address;
}

extern inline void pmd_free(pmd_t * pmd)
{
	free_pmd_fast(pmd);
}

extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
	address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
	if (pgd_none(*pgd)) {
		pmd_t *page = get_pmd_fast();

		if (!page)
			return get_pmd_slow(pgd, address);
		pgd_set(pgd, page);
		return page + address;
	}
	if (pgd_bad(*pgd)) {
		__bad_pmd(pgd);
		return NULL;
	}
	return (pmd_t *) pgd_page(*pgd) + address;
}

extern inline void pte_free_kernel(pte_t * pte)
{
	free_pte_fast(pte);
}

extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
	return pte_alloc(pmd, address);
}

extern inline void pmd_free_kernel(pmd_t * pmd)
{
	free_pmd_fast(pmd);
}

extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
{
	return pmd_alloc(pgd, address);
}

extern inline void pgd_free(pgd_t * pgd)
{
	free_pmd_fast((pmd_t *)pgd);
}

extern inline pgd_t * pgd_alloc(void)
{
	pgd_t *pgd = (pgd_t *)get_pmd_fast();
	if (!pgd)
		pgd = (pgd_t *)get_pointer_table();
	return pgd;
}

extern int do_check_pgt_cache(int, int);

extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
}

/*
 * Check if the addr/len goes up to the end of a physical
 * memory chunk.  Used for DMA functions.
 */
#ifdef CONFIG_SINGLE_MEMORY_CHUNK
/*
 * It makes no sense to consider whether we cross a memory boundary if
 * we support just one physical chunk of memory.
 */
extern inline int mm_end_of_chunk (unsigned long addr, int len)
{
	return 0;
}
#else
int mm_end_of_chunk (unsigned long addr, int len);
#endif

extern void kernel_set_cachemode(void *addr, unsigned long size, int cmode);

/*
 * The m68k doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
extern inline void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t pte)
{
}

/*
 * I don't know what is going on here, but since these were changed,
 * swapping hasn't been working on the 68040.
 */
/* With the new handling of PAGE_NONE the old definitions definitely
   don't work any more.  */

#define SWP_TYPE(entry)  (((entry) >> 2) & 0x7f)
#if 0
#define SWP_OFFSET(entry) ((entry) >> 9)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
#else
#define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << PAGE_SHIFT))
#endif

#endif /* __ASSEMBLY__ */

#define module_map      vmalloc
#define module_unmap    vfree

/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page)		(0)
#define kern_addr_valid(addr)	(1)

#endif /* _M68K_PGTABLE_H */