Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#ifndef __ASM_MIPS_PGTABLE_H
#define __ASM_MIPS_PGTABLE_H

#ifndef __LANGUAGE_ASSEMBLY__

#include <linux/linkage.h>
#include <asm/cachectl.h>

/*
 * The Linux memory management assumes a three-level page table setup. In
 * 32 bit mode we use that, but "fold" the mid level into the top-level page
 * table, so that we physically have the same two-level page table as the
 * i386 mmu expects. The 64 bit version uses a three level setup.
 *
 * This file contains the functions and defines necessary to modify and use
 * the MIPS page table tree.  Note the frequent conversion between addresses
 * in KSEG0 and KSEG1.
 *
 * This is required due to the cache aliasing problem of the R4xx0 series.
 * Sometimes doing uncached accesses also to improve the cache performance
 * slightly.  The R10000 caching mode "uncached accelerated" will help even
 * further.
 */

/*
 * TLB invalidation:
 *
 *  - invalidate() invalidates the current mm struct TLBs
 *  - invalidate_all() invalidates all processes TLBs
 *  - invalidate_mm(mm) invalidates the specified mm context TLB's
 *  - invalidate_page(mm, vmaddr) invalidates one page
 *  - invalidate_range(mm, start, end) invalidates a range of pages
 *
 * FIXME: MIPS has full control of all TLB activity in the CPU.  Though
 * we just stick with complete flushing of TLBs for now.
 */
extern asmlinkage void tlbflush(void);
#define invalidate()	({sys_cacheflush(0, ~0, BCACHE);tlbflush();})

#define invalidate_all() invalidate()
#define invalidate_mm(mm_struct) \
do { if ((mm_struct) == current->mm) invalidate(); } while (0)
#define invalidate_page(mm_struct,addr) \
do { if ((mm_struct) == current->mm) invalidate(); } while (0)
#define invalidate_range(mm_struct,start,end) \
do { if ((mm_struct) == current->mm) invalidate(); } while (0)

/*
 * We need a special version of copy_page that can handle virtual caches.
 * While we're at tweaking with caches we can use that to make it faster.
 * The R10000's accelerated caching mode will further accelerate it.
 */
extern void __copy_page(unsigned long from, unsigned long to);
#define copy_page(from,to) __copy_page((unsigned long)from, (unsigned long)to)

/* Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))

#endif /* !defined (__LANGUAGE_ASSEMBLY__) */

/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT	22
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT	22
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/*
 * entries per page directory level: we use two-level, so
 * we don't really have any PMD directory physically.
 */
#define PTRS_PER_PTE	1024
#define PTRS_PER_PMD	1
#define PTRS_PER_PGD	1024

#define VMALLOC_START     KSEG2
#define VMALLOC_VMADDR(x) ((unsigned long)(x))

/*
 * Note that we shift the lower 32bits of each EntryLo[01] entry
 * 6 bits to the left. That way we can convert the PFN into the
 * physical address by a single 'and' operation and gain 6 additional
 * bits for storing information which isn't present in a normal
 * MIPS page table.
 * Since the Mips has chosen some quite misleading names for the
 * valid and dirty bits they're defined here but only their synonyms
 * will be used.
 */
#define _PAGE_PRESENT               (1<<0)  /* implemented in software */
#define _PAGE_COW                   (1<<1)  /* implemented in software */
#define _PAGE_READ                  (1<<2)  /* implemented in software */
#define _PAGE_WRITE                 (1<<3)  /* implemented in software */
#define _PAGE_ACCESSED              (1<<4)  /* implemented in software */
#define _PAGE_MODIFIED              (1<<5)  /* implemented in software */
#define _PAGE_GLOBAL                (1<<6)
#define _PAGE_VALID                 (1<<7)
#define _PAGE_SILENT_READ           (1<<7)  /* synonym                 */
#define _PAGE_DIRTY                 (1<<8)  /* The MIPS dirty bit      */
#define _PAGE_SILENT_WRITE          (1<<8)
#define _CACHE_CACHABLE_NO_WA       (0<<9)  /* R4600 only              */
#define _CACHE_CACHABLE_WA          (1<<9)  /* R4600 only              */
#define _CACHE_UNCACHED             (2<<9)  /* R4[0246]00              */
#define _CACHE_CACHABLE_NONCOHERENT (3<<9)  /* R4[0246]00              */
#define _CACHE_CACHABLE_CE          (4<<9)  /* R4[04]00 only           */
#define _CACHE_CACHABLE_COW         (5<<9)  /* R4[04]00 only           */
#define _CACHE_CACHABLE_CUW         (6<<9)  /* R4[04]00 only           */
#define _CACHE_CACHABLE_ACCELERATED (7<<9)  /* R10000 only             */
#define _CACHE_MASK                 (7<<9)

#define __READABLE	(_PAGE_READ|_PAGE_SILENT_READ|_PAGE_ACCESSED)
#define __WRITEABLE	(_PAGE_WRITE|_PAGE_SILENT_WRITE|_PAGE_MODIFIED)

#define _PAGE_TABLE	(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
			_PAGE_DIRTY | _CACHE_UNCACHED)
#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _CACHE_MASK)

#define PAGE_NONE	__pgprot(_PAGE_PRESENT | __READABLE | _CACHE_UNCACHED)
#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_WRITE | \
			_PAGE_ACCESSED | _CACHE_CACHABLE_NONCOHERENT)
#define PAGE_COPY       __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_COW | \
			_CACHE_CACHABLE_NONCOHERENT)
#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | __READABLE | \
			_CACHE_CACHABLE_NONCOHERENT)
#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
			_CACHE_CACHABLE_NONCOHERENT)

/*
 * MIPS can't do page protection for execute, and considers that the same like
 * read. Also, write permissions imply read permissions. This is the closest
 * we can get by reasonable means..
 */
#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY
#define __P100	PAGE_READONLY
#define __P101	PAGE_READONLY
#define __P110	PAGE_COPY
#define __P111	PAGE_COPY

#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY
#define __S101	PAGE_READONLY
#define __S110	PAGE_SHARED
#define __S111	PAGE_SHARED

#if !defined (__LANGUAGE_ASSEMBLY__)

/* page table for 0-4MB for everybody */
extern unsigned long pg0[1024];

/*
 * BAD_PAGETABLE is used when we need a bogus page-table, while
 * BAD_PAGE is used for a bogus page.
 *
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);

extern unsigned long __zero_page(void);

#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE __zero_page()

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))

/*
 * sizeof(void*)==1<<SIZEOF_PTR_LOG2
 */
#if __mips == 3
#define SIZEOF_PTR_LOG2			3
#else
#define SIZEOF_PTR_LOG2			2
#endif

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
	(tsk)->tss.pg_dir = ((unsigned long) (pgdir)) - PT_OFFSET; \
	if ((tsk) == current) \
	{ \
		void load_pgd(unsigned long pg_dir); \
 \
		load_pgd((tsk)->tss.pg_dir); \
	} \
} while (0)

extern unsigned long high_memory;
extern pmd_t invalid_pte_table[PAGE_SIZE/sizeof(pmd_t)];

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
extern inline unsigned long pte_page(pte_t pte)
{ return PAGE_OFFSET + (pte_val(pte) & PAGE_MASK); }

extern inline unsigned long pmd_page(pmd_t pmd)
{ return PAGE_OFFSET + (pmd_val(pmd) & PAGE_MASK); }

extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{ pmd_val(*pmdp) = _PAGE_TABLE | ((unsigned long) ptep - PT_OFFSET); }

extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_PRESENT; }
extern inline int pte_inuse(pte_t *ptep)	{ return mem_map[MAP_NR(ptep)].reserved || mem_map[MAP_NR(ptep)].count != 1; }
extern inline void pte_clear(pte_t *ptep)	{ pte_val(*ptep) = 0; }
extern inline void pte_reuse(pte_t * ptep)
{
	if (!mem_map[MAP_NR(ptep)].reserved)
		mem_map[MAP_NR(ptep)].count++;
}

/*
 * Empty pgd/pmd entries point to the invalid_pte_table.
 */
extern inline int pmd_none(pmd_t pmd)		{ return (pmd_val(pmd) & PAGE_MASK) == ((unsigned long) invalid_pte_table - PAGE_OFFSET); }

extern inline int pmd_bad(pmd_t pmd)
{
	return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE ||
	        pmd_page(pmd) > high_memory ||
	        pmd_page(pmd) < PAGE_OFFSET;
}
extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_PRESENT; }
extern inline int pmd_inuse(pmd_t *pmdp)	{ return 0; }
extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = ((unsigned long) invalid_pte_table - PAGE_OFFSET); }
extern inline void pmd_reuse(pmd_t * pmdp)	{ }

/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
extern inline int pgd_none(pgd_t pgd)		{ return 0; }
extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
extern inline int pgd_present(pgd_t pgd)	{ return 1; }
extern inline int pgd_inuse(pgd_t * pgdp)	{ return mem_map[MAP_NR(pgdp)].reserved; }
extern inline void pgd_clear(pgd_t * pgdp)	{ }

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_READ; }
extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_WRITE; }
extern inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_READ; }
extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_MODIFIED; }
extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
extern inline int pte_cow(pte_t pte)		{ return pte_val(pte) & _PAGE_COW; }

extern inline pte_t pte_wrprotect(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
	return pte;
}
extern inline pte_t pte_rdprotect(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte;
}
extern inline pte_t pte_exprotect(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte;
}
extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; }
extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ|_PAGE_SILENT_WRITE); return pte; }
extern inline pte_t pte_uncow(pte_t pte)	{ pte_val(pte) &= ~_PAGE_COW; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)
{
	pte_val(pte) |= _PAGE_WRITE;
	if (pte_val(pte) & _PAGE_MODIFIED)
		pte_val(pte) |= _PAGE_SILENT_WRITE;
	return pte;
}
extern inline pte_t pte_mkread(pte_t pte)
{
	pte_val(pte) |= _PAGE_READ;
	if (pte_val(pte) & _PAGE_ACCESSED)
		pte_val(pte) |= _PAGE_SILENT_READ;
	return pte;
}
extern inline pte_t pte_mkexec(pte_t pte)
{
	pte_val(pte) |= _PAGE_READ;
	if (pte_val(pte) & _PAGE_ACCESSED)
		pte_val(pte) |= _PAGE_SILENT_READ;
	return pte;
}
extern inline pte_t pte_mkdirty(pte_t pte)
{
	pte_val(pte) |= _PAGE_MODIFIED;
	if (pte_val(pte) & _PAGE_WRITE)
		pte_val(pte) |= _PAGE_SILENT_WRITE;
	return pte;
}
extern inline pte_t pte_mkyoung(pte_t pte)
{
	pte_val(pte) |= _PAGE_ACCESSED;
	if (pte_val(pte) & _PAGE_READ)
	{
		pte_val(pte) |= _PAGE_SILENT_READ;
		if ((pte_val(pte) & (_PAGE_WRITE|_PAGE_MODIFIED)) == (_PAGE_WRITE|_PAGE_MODIFIED))
			pte_val(pte) |= _PAGE_SILENT_WRITE;
	}
	return pte;
}
extern inline pte_t pte_mkcow(pte_t pte)
{
	pte_val(pte) |= _PAGE_COW;
	return pte;
}

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = (page - PAGE_OFFSET) | pgprot_val(pgprot); return pte; }

extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }

/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
	return mm->pgd + (address >> PGDIR_SHIFT);
}

/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
	return (pmd_t *) dir;
}

/* Find an entry in the third-level page table.. */ 
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
	return (pte_t *) (pmd_page(*dir) + (PT_OFFSET - PAGE_OFFSET)) +
	       ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

/*
 * Allocate and free page tables. The xxx_kernel() versions are
 * used to allocate a kernel page table - this turns on ASN bits
 * if any, and marks the page tables reserved.
 */
extern inline void pte_free_kernel(pte_t * pte)
{
	unsigned long page = (unsigned long) pte;

	mem_map[MAP_NR(pte)].reserved = 0;
	if(!page)
		return;
	page -= (PT_OFFSET - PAGE_OFFSET);
	free_page(page);
}

extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		unsigned long page = __get_free_page(GFP_KERNEL);
		if (pmd_none(*pmd)) {
			if (page) {
				mem_map[MAP_NR(page)].reserved = 1;
				memset((void *) page, 0, PAGE_SIZE);
				sys_cacheflush((void *)page, PAGE_SIZE, DCACHE);
				sync_mem();
				page += (PT_OFFSET - PAGE_OFFSET);
				pmd_set(pmd, (pte_t *)page);
				return ((pte_t *)page) + address;
			}
			pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
			return NULL;
		}
		free_page(page);
	}
	if (pmd_bad(*pmd)) {
		printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd));
		pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
		return NULL;
	}
	return (pte_t *) (pmd_page(*pmd) + (PT_OFFSET - PAGE_OFFSET)) + address;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free_kernel(pmd_t * pmd)
{
}

extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

extern inline void pte_free(pte_t * pte)
{
	unsigned long page = (unsigned long) pte;

	if(!page)
		return;
	page -= (PT_OFFSET - PAGE_OFFSET);
	free_page(page);
}

extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		unsigned long page = __get_free_page(GFP_KERNEL);
		if (pmd_none(*pmd)) {
			if (page) {
				memset((void *) page, 0, PAGE_SIZE);
				sys_cacheflush((void *)page, PAGE_SIZE, DCACHE);
				sync_mem();
				page += (PT_OFFSET - PAGE_OFFSET);
				pmd_set(pmd, (pte_t *)page);
				return ((pte_t *)page) + address;
			}
			pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
			return NULL;
		}
		free_page(page);
	}
	if (pmd_bad(*pmd)) {
		printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
		pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
		return NULL;
	}
	return (pte_t *) (pmd_page(*pmd) + (PT_OFFSET - PAGE_OFFSET)) + address;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free(pmd_t * pmd)
{
}

extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

extern inline void pgd_free(pgd_t * pgd)
{
	unsigned long page = (unsigned long) pgd;

	if(!page)
		return;
	page -= (PT_OFFSET - PAGE_OFFSET);
	free_page(page);
}

/*
 * Initialize new page directory with pointers to invalid ptes
 */
extern inline void pgd_init(unsigned long page)
{
	unsigned long dummy1, dummy2;

	page += (PT_OFFSET - PAGE_OFFSET);
#if __mips >= 3
	/*
	 * Ich will Spass - ich geb Gas ich geb Gas...
	 */
	__asm__ __volatile__(
		".set\tnoreorder\n\t"
		".set\tnoat\n\t"
		".set\tmips3\n\t"
		"dsll32\t$1,%2,0\n\t"
		"dsrl32\t%2,$1,0\n\t"
		"or\t%2,$1\n"
		"1:\tsd\t%2,(%0)\n\t"
		"subu\t%1,1\n\t"
		"bnez\t%1,1b\n\t"
		"addiu\t%0,8\n\t"
		".set\tmips0\n\t"
		".set\tat\n\t"
		".set\treorder"
		:"=r" (dummy1),
		 "=r" (dummy2)
		:"r" (((unsigned long) invalid_pte_table - PAGE_OFFSET) |
		       _PAGE_TABLE),
		 "0" (page),
		 "1" (PAGE_SIZE/(sizeof(pmd_t)*2))
		:"$1");
#else
	__asm__ __volatile__(
		".set\tnoreorder\n"
		"1:\tsw\t%2,(%0)\n\t"
		"subu\t%1,1\n\t"
		"bnez\t%1,1b\n\t"
		"addiu\t%0,4\n\t"
		".set\treorder"
		:"=r" (dummy1),
		 "=r" (dummy2)
		:"r" (((unsigned long) invalid_pte_table - PAGE_OFFSET) |
		       _PAGE_TABLE),
		 "0" (page),
		 "1" (PAGE_SIZE/sizeof(pmd_t)));
#endif
}

extern inline pgd_t * pgd_alloc(void)
{
	unsigned long page;

	if(!(page = __get_free_page(GFP_KERNEL)))
		return NULL;

	sys_cacheflush((void *)page, PAGE_SIZE, DCACHE);
	sync_mem();
	pgd_init(page);

	return (pgd_t *) (page + (PT_OFFSET - PAGE_OFFSET));
}

extern pgd_t swapper_pg_dir[1024];

/*
 * MIPS doesn't need any external MMU info: the kernel page tables contain
 * all the necessary information.  We use this hook though to load the
 * TLB as early as possible with uptodate information avoiding unnecessary
 * exceptions.
 */
extern void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t pte);

#if __mips >= 3

#define SWP_TYPE(entry) (((entry) >> 32) & 0xff)
#define SWP_OFFSET(entry) ((entry) >> 40)
#define SWP_ENTRY(type,offset) pte_val(mk_swap_pte((type),(offset)))

#else

#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))

#endif

#endif /* !defined (__LANGUAGE_ASSEMBLY__) */

#endif /* __ASM_MIPS_PGTABLE_H */