Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 | /* ** bootstrap.c -- Load and launch the Atari Linux kernel ** ** Copyright 1993 by Arjan Knor ** ** This file is subject to the terms and conditions of the GNU General Public ** License. See the file COPYING in the main directory of this archive ** for more details. ** ** History: ** 10 Dec 1995 BOOTP/TFTP support (Roman) ** 03 Oct 1995 Allow kernel to be loaded to TT ram again (Andreas) ** 11 Jul 1995 Add support for ELF format kernel (Andreas) ** 16 Jun 1995 Adapted to Linux 1.2: kernel always loaded into ST ram ** (Andreas) ** 14 Nov 1994 YANML (Yet Another New Memory Layout :-) kernel ** start address is KSTART_ADDR + PAGE_SIZE, this ** does not need the ugly kludge with ** -fwritable-strings (++andreas) ** 09 Sep 1994 Adapted to the new memory layout: All the boot_info entry ** mentions all ST-Ram and the mover is located somewhere ** in the middle of memory (roman) ** Added the default arguments file known from the other ** bootstrap version ** 19 Feb 1994 Changed everything so that it works? (rdv) ** 14 Mar 1994 New mini-copy routine used (rdv) */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stddef.h> #include <string.h> #include <ctype.h> #include "sysvars.h" #include <osbind.h> #include <sys/types.h> #include <sys/file.h> /* linux specific include files */ #include <linux/a.out.h> #include <linux/elf.h> #include <asm/page.h> #define _LINUX_TYPES_H /* Hack to prevent including <linux/types.h> */ #include <asm/bootinfo.h> /* Atari bootstrap include file */ #include "bootstrap.h" #define MIN_RAMSIZE (3) /* 3 MB */ #define TEMP_STACKSIZE 256 extern char *optarg; extern int optind; static void get_default_args( int *argc, char ***argv ); /* This is missing in <unistd.h> */ extern int sync (void); struct bootinfo bi; u_long *cookiejar; u_long userstk; /* getcookie -- function to get the value of the given cookie. */ static int getcookie(char *cookie, u_long *value) { int i = 0; while(cookiejar[i] != 0L) { if(cookiejar[i] == *(u_long *)cookie) { *value = cookiejar[i + 1]; return 1; } i += 2; } return -1; } static void usage(void) { fprintf(stderr, "Usage:\n" "\tbootstrap [-dst] [-k kernel_executable] [-r ramdisk_file]" " [option...]\n"); exit(EXIT_FAILURE); } /* * Copy the kernel and the ramdisk to their final resting places. * * I assume that the kernel data and the ramdisk reside somewhere * in the middle of the memory. * * This program itself should be somewhere in the first 4096 bytes of memory * where the kernel never will be. In this way it can never be overwritten * by itself. * * At this point the registers have: * a0: the start of the final kernel * a1: the start of the current kernel * a2: the end of the final ramdisk * a3: the end of the current ramdisk * d0: the kernel size * d1: the ramdisk size */ asm (" .text .globl _copyall, _copyallend _copyall: movel a0,a4 /* save the start of the kernel for booting */ 1: movel a1@+,a0@+ /* copy the kernel starting at the beginning */ subql #4,d0 jcc 1b tstl d1 beq 3f 2: movel a3@-,a2@- /* copy the ramdisk starting at the end */ subql #4,d1 jcc 2b 3: jmp a4@ /* jump to the start of the kernel */ _copyallend: "); extern char copyall, copyallend; /* Test for a Medusa: This is the only machine on which address 0 is * writeable! * ...err! On the Afterburner040 (for the Falcon) it's the same... So we do * another test with 0x00ff82fe, that gives a bus error on the Falcon, but is * in the range where the Medusa always asserts DTACK. */ int test_medusa( void ) { int rv = 0; __asm__ __volatile__ ( "movel 0x8,a0\n\t" "movel sp,a1\n\t" "moveb 0x0,d1\n\t" "movel #Lberr,0x8\n\t" "moveq #0,%0\n\t" "clrb 0x0\n\t" "nop \n\t" "moveb d1,0x0\n\t" "nop \n\t" "tstb 0x00ff82fe\n\t" "nop \n\t" "moveq #1,%0\n" "Lberr:\t" "movel a1,sp\n\t" "movel a0,0x8" : "=d" (rv) : /* no inputs */ : "d1", "a0", "a1", "memory" ); return( rv ); } void get_medusa_bank_sizes( u_long *bank1, u_long *bank2 ) { static u_long save_addr; u_long test_base, saved_contents[16]; #define TESTADDR(i) (*((u_long *)((char *)test_base + i*8*MB))) #define TESTPAT 0x12345678 unsigned short oldflags; int i; /* This ensures at least that none of the test addresses conflicts * with the test code itself */ test_base = ((unsigned long)&save_addr & 0x007fffff) | 0x20000000; *bank1 = *bank2 = 0; /* Interrupts must be disabled because arbitrary addresses may be * temporarily overwritten, even code of an interrupt handler */ __asm__ __volatile__ ( "movew sr,%0; oriw #0x700,sr" : "=g" (oldflags) : ); disable_cache(); /* save contents of the test addresses */ for( i = 0; i < 16; ++i ) saved_contents[i] = TESTADDR(i); /* write 0s into all test addresses */ for( i = 0; i < 16; ++i ) TESTADDR(i) = 0; /* test for bank 1 */ #if 0 /* This is Freddi's original test, but it didn't work. */ TESTADDR(0) = TESTADDR(1) = TESTPAT; if (TESTADDR(1) == TESTPAT) { if (TESTADDR(2) == TESTPAT) *bank1 = 8*MB; else if (TESTADDR(3) == TESTPAT) *bank1 = 16*MB; else *bank1 = 32*MB; } else { if (TESTADDR(2) == TESTPAT) *bank1 = 0; else *bank1 = 16*MB; } #else TESTADDR(0) = TESTPAT; if (TESTADDR(1) == TESTPAT) *bank1 = 8*MB; else if (TESTADDR(2) == TESTPAT) *bank1 = 16*MB; else if (TESTADDR(4) == TESTPAT) *bank1 = 32*MB; else *bank1 = 64*MB; #endif /* test for bank2 */ if (TESTADDR(8) != 0) *bank2 = 0; else { TESTADDR(8) = TESTPAT; if (TESTADDR(9) != 0) { if (TESTADDR(10) == TESTPAT) *bank2 = 8*MB; else *bank2 = 32*MB; } else { TESTADDR(9) = TESTPAT; if (TESTADDR(10) == TESTPAT) *bank2 = 16*MB; else *bank2 = 64*MB; } } /* restore contents of the test addresses and restore interrupt mask */ for( i = 0; i < 16; ++i ) TESTADDR(i) = saved_contents[i]; __asm__ __volatile__ ( "movew %0,sr" : : "g" (oldflags) ); } #undef TESTADDR #undef TESTPAT #ifdef USE_BOOTP # include "bootp.h" #else # define kread read # define klseek lseek # define kclose close #endif /* ++andreas: this must be inline due to Super */ static inline void boot_exit (int) __attribute__ ((noreturn)); static inline void boot_exit(int status) { /* first go back to user mode */ (void)Super(userstk); getchar(); exit(status); } int main(int argc, char *argv[]) { int debugflag = 0, ch, kfd, rfd = -1, i, ignore_ttram = 0; int load_to_stram = 0; char *ramdisk_name, *kernel_name, *memptr; u_long ST_ramsize, TT_ramsize, memreq; u_long cpu_type, fpu_type, mch_type, mint; struct exec kexec; int elf_kernel = 0; Elf32_Ehdr kexec_elf; Elf32_Phdr *kernel_phdrs = NULL; u_long start_mem, mem_size, rd_size, text_offset = 0, kernel_size; #ifdef USE_BOOTP int prefer_bootp = 1, kname_set = 0; #endif ramdisk_name = NULL; kernel_name = "vmlinux"; /* print the startup message */ puts("\fLinux/68k Atari Bootstrap version 1.6" #ifdef USE_BOOTP " (with BOOTP)" #endif ); puts("Copyright 1993,1994 by Arjan Knor, Robert de Vries, Roman Hodek, Andreas Schwab\n"); /* ++roman: If no arguments on the command line, read them from * file */ if (argc == 1) get_default_args( &argc, &argv ); /* machine is Atari */ bi.machtype = MACH_ATARI; /* check arguments */ #ifdef USE_BOOTP while ((ch = getopt(argc, argv, "bdtsk:r:")) != EOF) #else while ((ch = getopt(argc, argv, "dtsk:r:")) != EOF) #endif switch (ch) { case 'd': debugflag = 1; break; case 't': ignore_ttram = 1; break; case 's': load_to_stram = 1; break; case 'k': kernel_name = optarg; #ifdef USE_BOOTP kname_set = 1; #endif break; case 'r': ramdisk_name = optarg; break; #ifdef USE_BOOTP case 'b': prefer_bootp = 1; break; #endif case '?': default: usage(); } argc -= optind; argv += optind; /* We have to access some system variables to get * the information we need, so we must switch to * supervisor mode first. */ userstk = Super(0L); /* get the info we need from the cookie-jar */ cookiejar = *_p_cookies; if(cookiejar == 0L) { /* if we find no cookies, it's probably an ST */ fprintf(stderr, "Error: No cookiejar found. Is this an ST?\n"); boot_exit(EXIT_FAILURE); } /* Exit if MiNT/MultiTOS is running. */ if(getcookie("MiNT", &mint) != -1) { puts("Warning: MiNT is running\n"); #if 0 puts("Linux cannot be started when MiNT is running. Aborting...\n"); boot_exit(EXIT_FAILURE); #endif } /* get _CPU, _FPU and _MCH */ getcookie("_CPU", &cpu_type); getcookie("_FPU", &fpu_type); getcookie("_MCH", &mch_type); /* check if we are on a 68030/40 with FPU */ if ((cpu_type != 30 && cpu_type != 40 && cpu_type != 60) || (fpu_type >> 16) < 2) { puts("Machine type currently not supported. Aborting..."); boot_exit(EXIT_FAILURE); } switch(cpu_type) { case 0: case 10: break; case 20: bi.cputype = CPU_68020; break; case 30: bi.cputype = CPU_68030; break; case 40: bi.cputype = CPU_68040; break; case 60: bi.cputype = CPU_68060; break; default: fprintf(stderr, "Error: Unknown CPU type. Aborting...\n"); boot_exit(EXIT_FAILURE); break; } printf("CPU: %ld; ", cpu_type + 68000); printf("FPU: "); /* check for FPU; in case of a '040 or '060, don't look at _FPU itself, * some software may set it to wrong values (68882 or the like) */ if (cpu_type == 40) { bi.cputype |= FPU_68040; puts( "68040\n" ); } else if (cpu_type == 60) { bi.cputype |= FPU_68060; puts( "68060\n" ); } else { switch ((fpu_type >> 16) & 6) { case 0: puts("not present\n"); break; case 2: /* try to determine real type */ if (fpu_idle_frame_size () != 0x18) goto m68882; /* fall through */ case 4: bi.cputype |= FPU_68881; puts("68881\n"); break; case 6: m68882: bi.cputype |= FPU_68882; puts("68882\n"); break; default: puts("Unknown FPU type. Assuming no FPU."); break; } } memset(&bi.bi_atari.hw_present, 0, sizeof(bi.bi_atari.hw_present)); /* Get the amounts of ST- and TT-RAM. */ /* The size must be a multiple of 1MB. */ i = 0; if (!test_medusa()) { struct { unsigned short version; /* version - currently 1 */ unsigned long fr_start; /* start addr FastRAM */ unsigned long fr_len; /* length FastRAM */ } *magn_cookie; struct { unsigned long version; unsigned long fr_start; /* start addr */ unsigned long fr_len; /* length */ } *fx_cookie; TT_ramsize = 0; if (!ignore_ttram) { /* "Original" or properly emulated TT-Ram */ if (*ramtop) { /* the 'ramtop' variable at 0x05a4 is not * officially documented. We use it anyway * because it is the only way to get the TTram size. * (It is zero if there is no TTram.) */ bi.memory[i].addr = TT_RAM_BASE; bi.memory[i].size = (*ramtop - TT_RAM_BASE) & ~(MB - 1); TT_ramsize = bi.memory[i].size / MB; i++; printf("TT-RAM: %ld Mb; ", TT_ramsize); } /* test for MAGNUM alternate RAM * added 26.9.1995 M. Schwingen, rincewind@discworld.oche.de */ if (getcookie("MAGN", (u_long *)&magn_cookie) != -1) { bi.memory[i].addr = magn_cookie->fr_start; bi.memory[i].size = magn_cookie->fr_len & ~(MB - 1); TT_ramsize += bi.memory[i].size / MB; printf("MAGNUM alternate RAM: %ld Mb; ", bi.memory[i].size/MB); i++; } /* BlowUps FX */ if (getcookie("BPFX", (u_long *)&fx_cookie) != -1 && fx_cookie) { /* if fx is set (cookie call above), * we assume that BlowUps FX-card * is installed. (Nat!) */ bi.memory[i].addr = fx_cookie->fr_start; bi.memory[i].size = fx_cookie->fr_len & ~(MB - 1); printf("FX alternate RAM: %ld Mb; ", bi.memory[i].size/MB); i++; } } bi.memory[i].addr = 0; bi.memory[i].size = *phystop & ~(MB - 1); ST_ramsize = bi.memory[i].size / MB; i++; printf("ST-RAM: %ld Mb\n", ST_ramsize ); bi.num_memory = i; if (load_to_stram && i > 1) { /* Put ST-RAM first in the list of mem blocks */ struct mem_info temp = bi.memory[i - 1]; bi.memory[i - 1] = bi.memory[0]; bi.memory[0] = temp; } } else { u_long bank1, bank2, medusa_st_ram; get_medusa_bank_sizes( &bank1, &bank2 ); medusa_st_ram = *phystop & ~(MB - 1); bank1 -= medusa_st_ram; TT_ramsize = 0; bi.memory[i].addr = 0; bi.memory[i].size = medusa_st_ram; ST_ramsize = bi.memory[i].size / MB; i++; printf("Medusa pseudo ST-RAM from bank 1: %ld Mb; ", ST_ramsize ); if (!ignore_ttram && bank1 > 0) { bi.memory[i].addr = 0x20000000 + medusa_st_ram; bi.memory[i].size = bank1; TT_ramsize += bank1; i++; printf("TT-RAM bank 1: %ld Mb; ", bank1/MB ); } if (!ignore_ttram && bank2 > 0) { bi.memory[i].addr = 0x24000000; bi.memory[i].size = bank2; TT_ramsize += bank2; i++; printf("TT-RAM bank 2: %ld Mb; ", bank2/MB ); } bi.num_memory = i; printf("\n"); } /* verify that there is enough RAM; ST- and TT-RAM combined */ if (ST_ramsize + TT_ramsize < MIN_RAMSIZE) { puts("Not enough RAM. Aborting..."); boot_exit(10); } #if 0 /* Get language/keyboard info */ /* TODO: do we need this ? */ /* Could be used to auto-select keyboard map later on. (rdv) */ if (getcookie("_AKP",&language) == -1) { /* Get the language info from the OS-header */ os_header = *_sysbase; os_header = os_header->os_beg; lang = (os_header->os_conf) >> 1; printf("Language: "); switch(lang) { case HOL: puts("Dutch"); break; /* Own country first :-) */ case USA: puts("American"); break; case SWG: puts("Switzerland (German)"); break; case FRG: puts("German"); break; case FRA: puts("French"); break; case SWF: puts("Switzerland (French)"); break; case UK: puts("English"); break; case SPA: puts("Spanish"); break; case ITA: puts("Italian"); break; case SWE: puts("Swedish"); break; case TUR: puts("Turkey"); break; case FIN: puts("Finnish"); break; case NOR: puts("Norwegian"); break; case DEN: puts("Danish"); break; case SAU: puts("Saudi-Arabian"); break; default: puts("Unknown"); break; } } else { printf("Language: "); switch(language & 0x0F) { case 1: printf("German "); break; case 2: printf("French "); break; case 4: printf("Spanish "); break; case 5: printf("Italian "); break; case 7: printf("Swiss French "); break; case 8: printf("Swiss German "); break; default: printf("English "); } printf("Keyboard type :"); switch(language >> 8) { case 1: printf("German "); break; case 2: printf("French "); break; case 4: printf("Spanish "); break; case 5: printf("Italian "); break; case 7: printf("Swiss French "); break; case 8: printf("Swiss German "); break; default: printf("English "); } printf("\n"); } #endif /* Pass contents of the _MCH cookie to the kernel */ bi.bi_atari.mch_cookie = mch_type; /* * Copy command line options into the kernel command line. */ i = 0; while (argc--) { if ((i+strlen(*argv)+1) < CL_SIZE) { i += strlen(*argv) + 1; if (bi.command_line[0]) strcat (bi.command_line, " "); strcat (bi.command_line, *argv++); } } printf ("Command line is '%s'\n", bi.command_line); start_mem = bi.memory[0].addr; mem_size = bi.memory[0].size; /* tell us where the kernel will go */ printf("\nThe kernel will be located at 0x%08lx\n", start_mem); #ifdef TEST /* ** Temporary exit point for testing */ boot_exit(-1); #endif /* TEST */ #ifdef USE_BOOTP kfd = -1; if (prefer_bootp) { /* First try to get a remote kernel, then use a local kernel (if * present) */ if (get_remote_kernel( kname_set ? kernel_name : NULL ) < 0) { printf( "\nremote boot failed; trying local kernel\n" ); if ((kfd = open (kernel_name, O_RDONLY)) == -1) { fprintf (stderr, "Unable to open kernel file %s\n", kernel_name); boot_exit (EXIT_FAILURE); } } } else { /* Try BOOTP if local kernel cannot be opened */ if ((kfd = open (kernel_name, O_RDONLY)) == -1) { printf( "\nlocal kernel failed; trying remote boot\n" ); if (get_remote_kernel( kname_set ? kernel_name : NULL ) < 0) { fprintf (stderr, "Unable to remote boot and " "to open kernel file %s\n", kernel_name); boot_exit (EXIT_FAILURE); } } } #else /* open kernel executable and read exec header */ if ((kfd = open (kernel_name, O_RDONLY)) == -1) { fprintf (stderr, "Unable to open kernel file %s\n", kernel_name); boot_exit (EXIT_FAILURE); } #endif if (kread (kfd, (void *)&kexec, sizeof(kexec)) != sizeof(kexec)) { fprintf (stderr, "Unable to read exec header from %s\n", kernel_name); boot_exit (EXIT_FAILURE); } switch (N_MAGIC(kexec)) { case ZMAGIC: text_offset = N_TXTOFF(kexec); break; case QMAGIC: text_offset = sizeof(kexec); /* the text size includes the exec header; remove this */ kexec.a_text -= sizeof(kexec); break; default: /* Try to parse it as an ELF header */ klseek (kfd, 0, SEEK_SET); if (kread (kfd, (void *)&kexec_elf, sizeof (kexec_elf)) == sizeof (kexec_elf) && memcmp (&kexec_elf.e_ident[EI_MAG0], ELFMAG, SELFMAG) == 0) { elf_kernel = 1; /* A few plausibility checks */ if (kexec_elf.e_type != ET_EXEC || kexec_elf.e_machine != EM_68K || kexec_elf.e_version != EV_CURRENT) { fprintf (stderr, "Invalid ELF header contents in kernel\n"); boot_exit (EXIT_FAILURE); } /* Load the program headers */ kernel_phdrs = (Elf32_Phdr *) Malloc (kexec_elf.e_phnum * sizeof (Elf32_Phdr)); if (kernel_phdrs == NULL) { fprintf (stderr, "Unable to allocate memory for program headers\n"); boot_exit (EXIT_FAILURE); } klseek (kfd, kexec_elf.e_phoff, SEEK_SET); if (kread (kfd, (void *) kernel_phdrs, kexec_elf.e_phnum * sizeof (*kernel_phdrs)) != kexec_elf.e_phnum * sizeof (*kernel_phdrs)) { fprintf (stderr, "Unable to read program headers from %s\n", kernel_name); boot_exit (EXIT_FAILURE); } break; } fprintf (stderr, "Wrong magic number %lo in kernel header\n", N_MAGIC(kexec)); boot_exit (EXIT_FAILURE); } /* Load the kernel one page after start of mem */ start_mem += PAGE_SIZE; mem_size -= PAGE_SIZE; /* Align bss size to multiple of four */ if (!elf_kernel) kexec.a_bss = (kexec.a_bss + 3) & ~3; /* init ramdisk */ if(ramdisk_name) { if((rfd = open(ramdisk_name, O_RDONLY)) == -1) { fprintf(stderr, "Unable to open ramdisk file %s\n", ramdisk_name); boot_exit(EXIT_FAILURE); } bi.ramdisk_size = (lseek(rfd, 0, SEEK_END) + 1023) / 1024; } else bi.ramdisk_size = 0; rd_size = bi.ramdisk_size << 10; if (mem_size - rd_size < MB && bi.num_memory > 1) /* If running low on ST ram load ramdisk into alternate ram. */ bi.ramdisk_addr = (u_long) bi.memory[1].addr + bi.memory[1].size - rd_size; else /* Else hopefully there is enough ST ram. */ bi.ramdisk_addr = (u_long)start_mem + mem_size - rd_size; /* calculate the total required amount of memory */ if (elf_kernel) { u_long min_addr = 0xffffffff, max_addr = 0; for (i = 0; i < kexec_elf.e_phnum; i++) { if (min_addr > kernel_phdrs[i].p_vaddr) min_addr = kernel_phdrs[i].p_vaddr; if (max_addr < kernel_phdrs[i].p_vaddr + kernel_phdrs[i].p_memsz) max_addr = kernel_phdrs[i].p_vaddr + kernel_phdrs[i].p_memsz; } /* This is needed for newer linkers that include the header in the first segment. */ if (min_addr == 0) { min_addr = PAGE_SIZE; kernel_phdrs[0].p_vaddr += PAGE_SIZE; kernel_phdrs[0].p_offset += PAGE_SIZE; kernel_phdrs[0].p_filesz -= PAGE_SIZE; kernel_phdrs[0].p_memsz -= PAGE_SIZE; } kernel_size = max_addr - min_addr; } else kernel_size = kexec.a_text + kexec.a_data + kexec.a_bss; memreq = kernel_size + sizeof (bi) + rd_size; /* allocate RAM for the kernel */ if (!(memptr = (char *)Malloc (memreq))) { fprintf (stderr, "Unable to allocate memory for kernel and ramdisk\n"); boot_exit (EXIT_FAILURE); } else fprintf(stderr, "kernel at address %lx\n", (u_long) memptr); (void)memset(memptr, 0, memreq); /* read the text and data segments from the kernel image */ if (elf_kernel) { for (i = 0; i < kexec_elf.e_phnum; i++) { if (klseek (kfd, kernel_phdrs[i].p_offset, SEEK_SET) == -1) { fprintf (stderr, "Failed to seek to segment %d\n", i); boot_exit (EXIT_FAILURE); } if (kread (kfd, memptr + kernel_phdrs[i].p_vaddr - PAGE_SIZE, kernel_phdrs[i].p_filesz) != kernel_phdrs[i].p_filesz) { fprintf (stderr, "Failed to read segment %d\n", i); boot_exit (EXIT_FAILURE); } } } else { if (klseek (kfd, text_offset, SEEK_SET) == -1) { fprintf (stderr, "Failed to seek to text\n"); Mfree ((void *)memptr); boot_exit (EXIT_FAILURE); } if (kread (kfd, memptr, kexec.a_text) != kexec.a_text) { fprintf (stderr, "Failed to read text\n"); Mfree ((void *)memptr); boot_exit (EXIT_FAILURE); } /* data follows immediately after text */ if (kread (kfd, memptr + kexec.a_text, kexec.a_data) != kexec.a_data) { fprintf (stderr, "Failed to read data\n"); Mfree ((void *)memptr); boot_exit (EXIT_FAILURE); } } kclose (kfd); /* copy the boot_info struct to the end of the kernel image */ memcpy ((void *)(memptr + kernel_size), &bi, sizeof(bi)); /* read the ramdisk image */ if (rfd != -1) { if (lseek (rfd, 0, SEEK_SET) == -1) { fprintf (stderr, "Failed to seek to beginning of ramdisk file\n"); Mfree ((void *)memptr); boot_exit (EXIT_FAILURE); } if (read (rfd, memptr + kernel_size + sizeof (bi), rd_size) != rd_size) { fprintf (stderr, "Failed to read ramdisk file\n"); Mfree ((void *)memptr); boot_exit (EXIT_FAILURE); } close (rfd); } /* for those who want to debug */ if (debugflag) { if (bi.ramdisk_size) printf ("RAM disk at %#lx, size is %ldK\n", (u_long)memptr + kernel_size, bi.ramdisk_size); if (elf_kernel) { for (i = 0; i < kexec_elf.e_phnum; i++) { printf ("Kernel segment %d at %#lx, size %ld\n", i, start_mem + kernel_phdrs[i].p_vaddr - PAGE_SIZE, kernel_phdrs[i].p_memsz); } } else { printf ("\nKernel text at %#lx, code size %d\n", start_mem, kexec.a_text); printf ("Kernel data at %#lx, data size %d\n", start_mem + kexec.a_text, kexec.a_data ); printf ("Kernel bss at %#lx, bss size %d\n", start_mem + kexec.a_text + kexec.a_data, kexec.a_bss ); } printf ("\nboot_info is at %#lx\n", start_mem + kernel_size); printf ("\nKernel entry is %#lx\n", elf_kernel ? kexec_elf.e_entry : kexec.a_entry); printf ("ramdisk dest top is %#lx\n", bi.ramdisk_addr + rd_size); printf ("ramdisk lower limit is %#lx\n", (u_long)(memptr + kernel_size)); printf ("ramdisk src top is %#lx\n", (u_long)(memptr + kernel_size) + rd_size); printf ("Type a key to continue the Linux boot..."); fflush (stdout); getchar(); } printf("Booting Linux...\n"); sync (); /* turn off interrupts... */ disable_interrupts(); /* turn off caches... */ disable_cache(); /* ..and any MMU translation */ disable_mmu(); /* ++guenther: allow reset if launched with MiNT */ *(long*)0x426 = 0; /* copy mover code to a safe place if needed */ memcpy ((void *) 0x400, ©all, ©allend - ©all); /* setup stack */ change_stack ((void *) PAGE_SIZE); /* * On the Atari you can have two situations: * 1. One piece of contiguous RAM (Falcon) * 2. Two pieces of contiguous RAM (TT) * In case 2 you can load your program into ST-ram and load your data in * any old RAM you have left. * In case 1 you could overwrite your own program when copying the * kernel and ramdisk to their final positions. * To solve this the mover code is copied to a safe place first. * Then this program jumps to the mover code. After the mover code * has finished it jumps to the start of the kernel in its new position. * I thought the memory just after the interrupt vector table was a safe * place because it is used by TOS to store some system variables. * This range goes from 0x400 to approx. 0x5B0. * This is more than enough for the miniscule mover routine (16 bytes). */ jump_to_mover((char *) start_mem, memptr, (char *) bi.ramdisk_addr + rd_size, memptr + memreq, kernel_size + sizeof (bi), rd_size, (void *) 0x400); for (;;); /* NOTREACHED */ } #define MAXARGS 30 static void get_default_args( int *argc, char ***argv ) { FILE *f; static char *nargv[MAXARGS]; char arg[256], *p; int c, quote, state; if (!(f = fopen( "bootargs", "r" ))) return; *argc = 1; if (***argv) nargv[0] = **argv; else nargv[0] = "bootstrap"; *argv = nargv; quote = state = 0; p = arg; while( (c = fgetc(f)) != EOF ) { if (state == 0) { /* outside args, skip whitespace */ if (!isspace(c)) { state = 1; p = arg; } } if (state) { /* inside an arg: copy it into 'arg', obeying quoting */ if (!quote && (c == '\'' || c == '"')) quote = c; else if (quote && c == quote) quote = 0; else if (!quote && isspace(c)) { /* end of this arg */ *p = 0; nargv[(*argc)++] = strdup(arg); state = 0; } else *p++ = c; } } if (state) { /* last arg finished by EOF! */ *p = 0; nargv[(*argc)++] = strdup(arg); } fclose( f ); nargv[*argc] = 0; } |