Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/* $Id: probe.c,v 1.39 1995/11/26 00:54:37 davem Exp $
 * probe.c: Preliminary device tree probing routines...
 *
 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 */

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/string.h>

#include <asm/oplib.h>
#include <asm/vac-ops.h>
#include <asm/idprom.h>
#include <asm/machines.h>
#include <asm/io.h>
#include <asm/vaddrs.h>
#include <asm/param.h>
#include <asm/timer.h>
#include <asm/mostek.h>
#include <asm/auxio.h>
#include <asm/system.h>
#include <asm/mp.h>
#include <asm/mbus.h>

/* #define DEBUG_PROBING */

/* XXX Grrr, this stuff should have it's own file, only generic stuff goes
 * XXX here.  Possibly clock.c and timer.c?  This file should get smaller
 * XXX and smaller as time goes on...
 */
enum sparc_clock_type sp_clock_typ;
struct mostek48t02 *mstk48t02_regs = 0;
struct mostek48t08 *mstk48t08_regs = 0;
volatile unsigned int *master_l10_limit = 0;
volatile unsigned int *master_l10_counter = 0;
struct sun4m_timer_regs *sun4m_timers;

static char node_str[128];

/* Cpu-type information and manufacturer strings */

struct cpu_iu_info {
  int psr_impl;
  int psr_vers;
  char* cpu_name;   /* should be enough I hope... */
};

struct cpu_fp_info {
  int psr_impl;
  int fp_vers;
  char* fp_name;
};

/* In order to get the fpu type correct, you need to take the IDPROM's
 * machine type value into consideration too.  I will fix this.
 */
struct cpu_fp_info linux_sparc_fpu[] = {
  { 0, 0, "Fujitsu MB86910 or Weitek WTL1164/5"},
  { 0, 1, "Fujitsu MB86911 or Weitek WTL1164/5 or LSI L64831"},
  { 0, 2, "LSI Logic L64802 or Texas Instruments ACT8847"},
  /* SparcStation SLC, SparcStation1 */
  { 0, 3, "Weitek WTL3170/2"},
  /* SPARCstation-5 */
  { 0, 4, "Lsi Logic/Meiko L64804 or compatible"},
  { 0, 5, "reserved"},
  { 0, 6, "reserved"},
  { 0, 7, "No FPU"},
  { 1, 0, "ROSS HyperSparc combined IU/FPU"},
  { 1, 1, "Lsi Logic L64814"},
  { 1, 2, "Texas Instruments TMS390-C602A"},
  { 1, 3, "Cypress CY7C602 FPU"},
  { 1, 4, "reserved"},
  { 1, 5, "reserved"},
  { 1, 6, "reserved"},
  { 1, 7, "No FPU"},
  { 2, 0, "BIT B5010 or B5110/20 or B5210"},
  { 2, 1, "reserved"},
  { 2, 2, "reserved"},
  { 2, 3, "reserved"},
  { 2, 4, "reserved"},
  { 2, 5, "reserved"},
  { 2, 6, "reserved"},
  { 2, 7, "No FPU"},
  /* SuperSparc 50 module */
  { 4, 0, "SuperSparc on-chip FPU"},
  /* SparcClassic */
  { 4, 4, "TI MicroSparc on chip FPU"},
  { 5, 0, "Matsushita MN10501"},
  { 5, 1, "reserved"},
  { 5, 2, "reserved"},
  { 5, 3, "reserved"},
  { 5, 4, "reserved"},
  { 5, 5, "reserved"},
  { 5, 6, "reserved"},
  { 5, 7, "No FPU"},
};

#define NSPARCFPU  (sizeof(linux_sparc_fpu)/sizeof(struct cpu_fp_info))

struct cpu_iu_info linux_sparc_chips[] = {
  /* Sun4/100, 4/200, SLC */
  { 0, 0, "Fujitsu  MB86900/1A or LSI L64831 SparcKIT-40"},
  /* borned STP1012PGA */
  { 0, 4, "Fujitsu  MB86904"},
  /* SparcStation2, SparcServer 490 & 690 */
  { 1, 0, "LSI Logic Corporation - L64811"},
  /* SparcStation2 */
  { 1, 1, "Cypress/ROSS CY7C601"},
  /* Embedded controller */
  { 1, 3, "Cypress/ROSS CY7C611"},
  /* Ross Technologies HyperSparc */
  { 1, 0xf, "ROSS HyperSparc RT620"},
  { 1, 0xe, "ROSS HyperSparc RT625"},
  /* ECL Implementation, CRAY S-MP Supercomputer... AIEEE! */
  /* Someone please write the code to support this beast! ;) */
  { 2, 0, "Bipolar Integrated Technology - B5010"},
  { 3, 0, "LSI Logic Corporation - unknown-type"},
  { 4, 0, "Texas Instruments, Inc. - SuperSparc 50"},
  /* SparcClassic  --  borned STP1010TAB-50*/
  { 4, 1, "Texas Instruments, Inc. - MicroSparc"},
  { 4, 2, "Texas Instruments, Inc. - MicroSparc II"},
  { 4, 3, "Texas Instruments, Inc. - SuperSparc 51"},
  { 4, 4, "Texas Instruments, Inc. - SuperSparc 61"},
  { 4, 5, "Texas Instruments, Inc. - unknown"},
  { 5, 0, "Matsushita - MN10501"},
  { 6, 0, "Philips Corporation - unknown"},
  { 7, 0, "Harvest VLSI Design Center, Inc. - unknown"},
  /* Gallium arsenide 200MHz, BOOOOGOOOOMIPS!!! */
  { 8, 0, "Systems and Processes Engineering Corporation (SPEC)"},
  { 9, 0, "Fujitsu #3"},
  { 0xa, 0, "UNKNOWN CPU-VENDOR/TYPE"},
  { 0xb, 0, "UNKNOWN CPU-VENDOR/TYPE"},
  { 0xc, 0, "UNKNOWN CPU-VENDOR/TYPE"},
  { 0xd, 0, "UNKNOWN CPU-VENDOR/TYPE"},
  { 0xe, 0, "UNKNOWN CPU-VENDOR/TYPE"},
  { 0xf, 0, "UNKNOWN CPU-VENDOR/TYPE"},
};

#define NSPARCCHIPS  (sizeof(linux_sparc_chips)/sizeof(struct cpu_iu_info))

char *sparc_cpu_type[NCPUS] = { "cpu-oops", "cpu-oops1", "cpu-oops2", "cpu-oops3" };
char *sparc_fpu_type[NCPUS] = { "fpu-oops", "fpu-oops1", "fpu-oops2", "fpu-oops3" };

static inline int find_mmu_num_contexts(int cpu)
{
	return prom_getintdefault(cpu, "mmu-nctx", 0x8);
}

unsigned int fsr_storage;

void
probe_cpu(void)
{
	int psr_impl, psr_vers, fpu_vers;
	int i, cpuid;

	cpuid = get_cpuid();

	psr_impl = ((get_psr()>>28)&0xf);
	psr_vers = ((get_psr()>>24)&0xf);

	fpu_vers = ((get_fsr()>>17)&0x7);

	for(i = 0; i<NSPARCCHIPS; i++) {
		if(linux_sparc_chips[i].psr_impl == psr_impl)
			if(linux_sparc_chips[i].psr_vers == psr_vers) {
				sparc_cpu_type[cpuid] = linux_sparc_chips[i].cpu_name;
				break;
			}
	}

	if(i==NSPARCCHIPS)
		printk("DEBUG: psr.impl = 0x%x   psr.vers = 0x%x\n", psr_impl, 
			    psr_vers);

	for(i = 0; i<NSPARCFPU; i++) {
		if(linux_sparc_fpu[i].psr_impl == psr_impl)
			if(linux_sparc_fpu[i].fp_vers == fpu_vers) {
				sparc_fpu_type[cpuid] = linux_sparc_fpu[i].fp_name;
				break;
			}
	}

	if(i == NSPARCFPU) {
		printk("DEBUG: psr.impl = 0x%x  fsr.vers = 0x%x\n", psr_impl,
			    fpu_vers);
		sparc_fpu_type[cpuid] = linux_sparc_fpu[31].fp_name;
	}

	printk("cpu%d CPU: %s \n", cpuid, sparc_cpu_type[cpuid]);
	printk("cpu%d FPU: %s \n", cpuid, sparc_fpu_type[cpuid]);
}

void
probe_vac(void)
{
	int propval;

	sun4c_disable_vac();
	sun4c_vacinfo.num_bytes = prom_getintdefault(prom_root_node,
						     "vac-size", 65536);
	sun4c_vacinfo.linesize = prom_getintdefault(prom_root_node,
						    "vac-linesize", 16);
	sun4c_vacinfo.num_lines =
		(sun4c_vacinfo.num_bytes / sun4c_vacinfo.linesize);
	switch(sun4c_vacinfo.linesize) {
	case 16:
		sun4c_vacinfo.log2lsize = 4;
		break;
	case 32:
		sun4c_vacinfo.log2lsize = 5;
		break;
	default:
		printk("probe_vac: Didn't expect vac-linesize of %d, halting\n",
			    sun4c_vacinfo.linesize);
	};

	propval = prom_getintdefault(prom_root_node, "vac_hwflush", -1);
	sun4c_vacinfo.do_hwflushes = (propval == -1 ?
				      prom_getintdefault(prom_root_node,
							 "vac-hwflush", 0) :
				      propval);

	printk("SUN4C: VAC size %d line size %d using %s flushes ",
	       sun4c_vacinfo.num_bytes, sun4c_vacinfo.linesize,
	       (sun4c_vacinfo.do_hwflushes ? "hardware" : "software"));
	if(sun4c_vacinfo.num_bytes != 65536) {
		printk("WEIRD Sun4C VAC cache size, tell davem");
		prom_halt();
	}

	/* setup the low-level assembly routine ptrs */
	if(sun4c_vacinfo.do_hwflushes) {
		if(sun4c_vacinfo.linesize == 16) {
			sun4c_ctxflush = (unsigned long)sun4c_ctxflush_hw64KB16B;
			sun4c_segflush = (unsigned long)sun4c_segflush_hw64KB16B;
			sun4c_pgflush = (unsigned long)sun4c_pgflush_hw64KB16B;
		} else if(sun4c_vacinfo.linesize == 32) {
			sun4c_ctxflush = (unsigned long)sun4c_ctxflush_hw64KB32B;
			sun4c_segflush = (unsigned long)sun4c_segflush_hw64KB32B;
			sun4c_pgflush = (unsigned long)sun4c_pgflush_hw64KB32B;
		} else {
			printk("WEIRD Sun4C VAC cache line size, tell davem\n");
			prom_halt();
		}
	} else {
		if(sun4c_vacinfo.linesize == 16) {
			sun4c_ctxflush = (unsigned long)sun4c_ctxflush_sw64KB16B;
			sun4c_segflush = (unsigned long)sun4c_segflush_sw64KB16B;
			sun4c_pgflush = (unsigned long)sun4c_pgflush_sw64KB16B;
		} else if(sun4c_vacinfo.linesize == 32) {
			sun4c_ctxflush = (unsigned long)sun4c_ctxflush_sw64KB32B;
			sun4c_segflush = (unsigned long)sun4c_segflush_sw64KB32B;
			sun4c_pgflush = (unsigned long)sun4c_pgflush_sw64KB32B;
		} else {
			printk("WEIRD Sun4C VAC cache line size, tell davem\n");
			prom_halt();
		}
	}


	sun4c_flush_all();
	sun4c_enable_vac();
	printk("enabled\n");

	return;
}

extern int num_segmaps, num_contexts;

/* XXX Only called on sun4c XXX */
void
probe_mmu(void)
{
	int cpuid;

	/* who are we? */
	cpuid = get_cpuid();
	switch(sparc_cpu_model) {
	case sun4:
	case sun4c:
	case sun4e:
		/* A sun4, sun4c or sun4e. */
		num_segmaps = prom_getintdefault(prom_root_node, "mmu-npmg", 128);
		num_contexts = find_mmu_num_contexts(prom_root_node);

		printk("cpu%d MMU segmaps: %d     MMU contexts: %d\n", cpuid,
			    num_segmaps, num_contexts);
		break;
	default:
		printk("cpu%d probe_mmu: sparc_cpu_model botch\n", cpuid);
		break;
	};
}

/* Clock probing, we probe the timers here also. */
volatile unsigned int foo_limit;

void
probe_clock(int fchild)
{
	register int node, type;
	struct linux_prom_registers clk_reg[2];

	/* This will basically traverse the node-tree of the prom to see
	 * which timer chip is on this machine.
	 */

	node = 0;
	if(sparc_cpu_model == sun4) {
		printk("probe_clock: No SUN4 Clock/Timer support yet...\n");
		return;
	}
	if(sparc_cpu_model == sun4c) node=prom_getchild(prom_root_node);
	else
		if(sparc_cpu_model == sun4m)
			node=prom_getchild(prom_searchsiblings(prom_getchild(prom_root_node), "obio"));
	type = 0;
	sp_clock_typ = MSTK_INVALID;
	for(;;) {
		prom_getstring(node, "model", node_str, sizeof(node_str));
		if(strcmp(node_str, "mk48t02") == 0) {
			sp_clock_typ = MSTK48T02;
			if(prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) {
				printk("probe_clock: FAILED!\n");
				halt();
			}
			prom_apply_obio_ranges(clk_reg, 1);
			/* Map the clock register io area read-only */
			mstk48t02_regs = (struct mostek48t02 *) 
				sparc_alloc_io((void *) clk_reg[0].phys_addr,
					       (void *) 0, sizeof(*mstk48t02_regs),
					       "clock", 0x0, 0x0);
			mstk48t08_regs = 0;  /* To catch weirdness */
			break;
		}

		if(strcmp(node_str, "mk48t08") == 0) {
			sp_clock_typ = MSTK48T08;
			if(prom_getproperty(node, "reg", (char *) clk_reg,
					    sizeof(clk_reg)) == -1) {
				printk("probe_clock: FAILED!\n");
				halt();
			}
			prom_apply_obio_ranges(clk_reg, 1);
			/* Map the clock register io area read-only */
			mstk48t08_regs = (struct mostek48t08 *)
				sparc_alloc_io((void *) clk_reg[0].phys_addr,
					       (void *) 0, sizeof(*mstk48t08_regs),
					       "clock", 0x0, 0x0);

			mstk48t02_regs = &mstk48t08_regs->regs;
			break;
		}

		node = prom_getsibling(node);
		if(node == 0) {
			printk("Aieee, could not find timer chip type\n");
			return;
		}
	}

	if(sparc_cpu_model == sun4c) {
		/* Map the Timer chip, this is implemented in hardware inside
		 * the cache chip on the sun4c.
		 */
		sparc_alloc_io ((void *) SUN4C_TIMER_PHYSADDR, (void *) TIMER_VADDR,
				sizeof (*SUN4C_TIMER_STRUCT), "timer", 0x0, 0x0);

		/* Have the level 10 timer tick at 100HZ.  We don't touch the
		 * level 14 timer limit since we are letting the prom handle
		 * them until we have a real console driver so L1-A works.
		 */
		SUN4C_TIMER_STRUCT->timer_limit10 = (((1000000/HZ) + 1) << 10);
		master_l10_limit = &(SUN4C_TIMER_STRUCT->timer_limit10);
		master_l10_counter = &(SUN4C_TIMER_STRUCT->cur_count10);
	} else {
		int reg_count;
		struct linux_prom_registers cnt_regs[PROMREG_MAX];
		int obio_node, cnt_node;

		cnt_node = 0;
		if((obio_node =
		    prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 ||
		   (obio_node = prom_getchild (obio_node)) == 0 ||
		   (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) {
			printk ("Cannot find /obio/counter node\n");
			prom_halt ();
		}
		reg_count = prom_getproperty(cnt_node, "reg",
					     (void *) cnt_regs, sizeof(cnt_regs));
		reg_count = (reg_count/sizeof(struct linux_prom_registers));

		/* Apply the obio ranges to the timer registers. */
		prom_apply_obio_ranges(cnt_regs, reg_count);

		/* Map the per-cpu Counter registers. */
		sparc_alloc_io(cnt_regs[0].phys_addr, (void *) TIMER_VADDR,
			       PAGE_SIZE*NCPUS, "counters_percpu",
			       cnt_regs[0].which_io, 0x0);

		/* Map the system Counter register. */
		sparc_alloc_io(cnt_regs[reg_count-1].phys_addr,
			       (void *) TIMER_VADDR+(NCPUS*PAGE_SIZE),
			       cnt_regs[reg_count-1].reg_size,
			       "counters_system", cnt_regs[reg_count-1].which_io, 0x0);
		sun4m_timers = (struct sun4m_timer_regs *) TIMER_VADDR;

		/* Avoid interrupt bombs... */
		foo_limit = (volatile) sun4m_timers->l10_timer_limit;

		/* Must set the master pointer first or we will lose badly. */
		master_l10_limit =
			&(((struct sun4m_timer_regs *)TIMER_VADDR)->l10_timer_limit);
		master_l10_counter =
			&(((struct sun4m_timer_regs *)TIMER_VADDR)->l10_cur_count);

		((struct sun4m_timer_regs *)TIMER_VADDR)->l10_timer_limit =
			(((1000000/HZ) + 1) << 10);
	}
}

/* Probe and map in the Auxiliaary I/O register */
void
probe_auxio(void)
{
	int node, auxio_nd;
	struct linux_prom_registers auxregs[1];

	node = prom_getchild(prom_root_node);
	auxio_nd = prom_searchsiblings(node, "auxiliary-io");
	if(!auxio_nd) {
		node = prom_searchsiblings(node, "obio");
		node = prom_getchild(node);
		auxio_nd = prom_searchsiblings(node, "auxio");
		if(!auxio_nd) {
			printk("Cannot find auxio node, cannot continue...\n");
			prom_halt();
		}
	}
	prom_getproperty(auxio_nd, "reg", (char *) auxregs, sizeof(auxregs));
	prom_apply_obio_ranges(auxregs, 0x1);
	/* Map the register both read and write */
	sparc_alloc_io(auxregs[0].phys_addr, (void *) AUXIO_VADDR,
		       auxregs[0].reg_size, "auxilliaryIO", auxregs[0].which_io, 0x0);
	printk("Mapped AUXIO at paddr %08lx vaddr %08lx\n",
		    (unsigned long) auxregs[0].phys_addr,
		    (unsigned long) AUXIO_VADDR);
}

extern unsigned long probe_memory(void);
extern struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
unsigned int phys_bytes_of_ram, end_of_phys_memory;
extern void probe_mbus(void);

/* #define DEBUG_PROBE_DEVICES */
struct prom_cpuinfo linux_cpus[NCPUS];
int linux_num_cpus;

unsigned long
probe_devices(unsigned long mem_start)
{
	int nd, i, prom_node_cpu, thismid;
	int cpu_nds[NCPUS];  /* One node for each cpu */
	int cpu_ctr = 0;

	prom_getstring(prom_root_node, "device_type", node_str, sizeof(node_str));
	if(strcmp(node_str, "cpu") == 0) {
		cpu_nds[0] = prom_root_node;
		cpu_ctr++;
	} else {
		int scan;
		scan = prom_getchild(prom_root_node);
		nd = 0;
		while((scan = prom_getsibling(scan)) != 0) {
			prom_getstring(scan, "device_type", node_str, sizeof(node_str));
			if(strcmp(node_str, "cpu") == 0) {
				cpu_nds[cpu_ctr] = scan;
				linux_cpus[cpu_ctr].prom_node = scan;
				prom_getproperty(scan, "mid", (char *) &thismid, sizeof(thismid));
				linux_cpus[cpu_ctr].mid = thismid;
				cpu_ctr++;
			}
		};
		if(cpu_ctr == 0) {
			printk("No CPU nodes found, cannot continue.\n");
			/* Probably a sun4d or sun4e, Sun is trying to trick us ;-) */
			halt();
		}
		printk("Found %d CPU prom device tree node(s).\n", cpu_ctr);
	};
	prom_node_cpu = cpu_nds[0];

	linux_num_cpus = cpu_ctr;
	for(i=0; i<cpu_ctr; i++) {
		prom_getstring(cpu_nds[i], "name", node_str, sizeof(node_str));
		printk("cpu%d: %s \n", i, node_str);
	}

	probe_cpu();
	probe_auxio();
	if(sparc_cpu_model != sun4c) probe_mbus();

	return mem_start;
}