Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | /* $Id: probe.c,v 1.39 1995/11/26 00:54:37 davem Exp $ * probe.c: Preliminary device tree probing routines... * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/string.h> #include <asm/oplib.h> #include <asm/vac-ops.h> #include <asm/idprom.h> #include <asm/machines.h> #include <asm/io.h> #include <asm/vaddrs.h> #include <asm/param.h> #include <asm/timer.h> #include <asm/mostek.h> #include <asm/auxio.h> #include <asm/system.h> #include <asm/mp.h> #include <asm/mbus.h> /* #define DEBUG_PROBING */ /* XXX Grrr, this stuff should have it's own file, only generic stuff goes * XXX here. Possibly clock.c and timer.c? This file should get smaller * XXX and smaller as time goes on... */ enum sparc_clock_type sp_clock_typ; struct mostek48t02 *mstk48t02_regs = 0; struct mostek48t08 *mstk48t08_regs = 0; volatile unsigned int *master_l10_limit = 0; volatile unsigned int *master_l10_counter = 0; struct sun4m_timer_regs *sun4m_timers; static char node_str[128]; /* Cpu-type information and manufacturer strings */ struct cpu_iu_info { int psr_impl; int psr_vers; char* cpu_name; /* should be enough I hope... */ }; struct cpu_fp_info { int psr_impl; int fp_vers; char* fp_name; }; /* In order to get the fpu type correct, you need to take the IDPROM's * machine type value into consideration too. I will fix this. */ struct cpu_fp_info linux_sparc_fpu[] = { { 0, 0, "Fujitsu MB86910 or Weitek WTL1164/5"}, { 0, 1, "Fujitsu MB86911 or Weitek WTL1164/5 or LSI L64831"}, { 0, 2, "LSI Logic L64802 or Texas Instruments ACT8847"}, /* SparcStation SLC, SparcStation1 */ { 0, 3, "Weitek WTL3170/2"}, /* SPARCstation-5 */ { 0, 4, "Lsi Logic/Meiko L64804 or compatible"}, { 0, 5, "reserved"}, { 0, 6, "reserved"}, { 0, 7, "No FPU"}, { 1, 0, "ROSS HyperSparc combined IU/FPU"}, { 1, 1, "Lsi Logic L64814"}, { 1, 2, "Texas Instruments TMS390-C602A"}, { 1, 3, "Cypress CY7C602 FPU"}, { 1, 4, "reserved"}, { 1, 5, "reserved"}, { 1, 6, "reserved"}, { 1, 7, "No FPU"}, { 2, 0, "BIT B5010 or B5110/20 or B5210"}, { 2, 1, "reserved"}, { 2, 2, "reserved"}, { 2, 3, "reserved"}, { 2, 4, "reserved"}, { 2, 5, "reserved"}, { 2, 6, "reserved"}, { 2, 7, "No FPU"}, /* SuperSparc 50 module */ { 4, 0, "SuperSparc on-chip FPU"}, /* SparcClassic */ { 4, 4, "TI MicroSparc on chip FPU"}, { 5, 0, "Matsushita MN10501"}, { 5, 1, "reserved"}, { 5, 2, "reserved"}, { 5, 3, "reserved"}, { 5, 4, "reserved"}, { 5, 5, "reserved"}, { 5, 6, "reserved"}, { 5, 7, "No FPU"}, }; #define NSPARCFPU (sizeof(linux_sparc_fpu)/sizeof(struct cpu_fp_info)) struct cpu_iu_info linux_sparc_chips[] = { /* Sun4/100, 4/200, SLC */ { 0, 0, "Fujitsu MB86900/1A or LSI L64831 SparcKIT-40"}, /* borned STP1012PGA */ { 0, 4, "Fujitsu MB86904"}, /* SparcStation2, SparcServer 490 & 690 */ { 1, 0, "LSI Logic Corporation - L64811"}, /* SparcStation2 */ { 1, 1, "Cypress/ROSS CY7C601"}, /* Embedded controller */ { 1, 3, "Cypress/ROSS CY7C611"}, /* Ross Technologies HyperSparc */ { 1, 0xf, "ROSS HyperSparc RT620"}, { 1, 0xe, "ROSS HyperSparc RT625"}, /* ECL Implementation, CRAY S-MP Supercomputer... AIEEE! */ /* Someone please write the code to support this beast! ;) */ { 2, 0, "Bipolar Integrated Technology - B5010"}, { 3, 0, "LSI Logic Corporation - unknown-type"}, { 4, 0, "Texas Instruments, Inc. - SuperSparc 50"}, /* SparcClassic -- borned STP1010TAB-50*/ { 4, 1, "Texas Instruments, Inc. - MicroSparc"}, { 4, 2, "Texas Instruments, Inc. - MicroSparc II"}, { 4, 3, "Texas Instruments, Inc. - SuperSparc 51"}, { 4, 4, "Texas Instruments, Inc. - SuperSparc 61"}, { 4, 5, "Texas Instruments, Inc. - unknown"}, { 5, 0, "Matsushita - MN10501"}, { 6, 0, "Philips Corporation - unknown"}, { 7, 0, "Harvest VLSI Design Center, Inc. - unknown"}, /* Gallium arsenide 200MHz, BOOOOGOOOOMIPS!!! */ { 8, 0, "Systems and Processes Engineering Corporation (SPEC)"}, { 9, 0, "Fujitsu #3"}, { 0xa, 0, "UNKNOWN CPU-VENDOR/TYPE"}, { 0xb, 0, "UNKNOWN CPU-VENDOR/TYPE"}, { 0xc, 0, "UNKNOWN CPU-VENDOR/TYPE"}, { 0xd, 0, "UNKNOWN CPU-VENDOR/TYPE"}, { 0xe, 0, "UNKNOWN CPU-VENDOR/TYPE"}, { 0xf, 0, "UNKNOWN CPU-VENDOR/TYPE"}, }; #define NSPARCCHIPS (sizeof(linux_sparc_chips)/sizeof(struct cpu_iu_info)) char *sparc_cpu_type[NCPUS] = { "cpu-oops", "cpu-oops1", "cpu-oops2", "cpu-oops3" }; char *sparc_fpu_type[NCPUS] = { "fpu-oops", "fpu-oops1", "fpu-oops2", "fpu-oops3" }; static inline int find_mmu_num_contexts(int cpu) { return prom_getintdefault(cpu, "mmu-nctx", 0x8); } unsigned int fsr_storage; void probe_cpu(void) { int psr_impl, psr_vers, fpu_vers; int i, cpuid; cpuid = get_cpuid(); psr_impl = ((get_psr()>>28)&0xf); psr_vers = ((get_psr()>>24)&0xf); fpu_vers = ((get_fsr()>>17)&0x7); for(i = 0; i<NSPARCCHIPS; i++) { if(linux_sparc_chips[i].psr_impl == psr_impl) if(linux_sparc_chips[i].psr_vers == psr_vers) { sparc_cpu_type[cpuid] = linux_sparc_chips[i].cpu_name; break; } } if(i==NSPARCCHIPS) printk("DEBUG: psr.impl = 0x%x psr.vers = 0x%x\n", psr_impl, psr_vers); for(i = 0; i<NSPARCFPU; i++) { if(linux_sparc_fpu[i].psr_impl == psr_impl) if(linux_sparc_fpu[i].fp_vers == fpu_vers) { sparc_fpu_type[cpuid] = linux_sparc_fpu[i].fp_name; break; } } if(i == NSPARCFPU) { printk("DEBUG: psr.impl = 0x%x fsr.vers = 0x%x\n", psr_impl, fpu_vers); sparc_fpu_type[cpuid] = linux_sparc_fpu[31].fp_name; } printk("cpu%d CPU: %s \n", cpuid, sparc_cpu_type[cpuid]); printk("cpu%d FPU: %s \n", cpuid, sparc_fpu_type[cpuid]); } void probe_vac(void) { int propval; sun4c_disable_vac(); sun4c_vacinfo.num_bytes = prom_getintdefault(prom_root_node, "vac-size", 65536); sun4c_vacinfo.linesize = prom_getintdefault(prom_root_node, "vac-linesize", 16); sun4c_vacinfo.num_lines = (sun4c_vacinfo.num_bytes / sun4c_vacinfo.linesize); switch(sun4c_vacinfo.linesize) { case 16: sun4c_vacinfo.log2lsize = 4; break; case 32: sun4c_vacinfo.log2lsize = 5; break; default: printk("probe_vac: Didn't expect vac-linesize of %d, halting\n", sun4c_vacinfo.linesize); }; propval = prom_getintdefault(prom_root_node, "vac_hwflush", -1); sun4c_vacinfo.do_hwflushes = (propval == -1 ? prom_getintdefault(prom_root_node, "vac-hwflush", 0) : propval); printk("SUN4C: VAC size %d line size %d using %s flushes ", sun4c_vacinfo.num_bytes, sun4c_vacinfo.linesize, (sun4c_vacinfo.do_hwflushes ? "hardware" : "software")); if(sun4c_vacinfo.num_bytes != 65536) { printk("WEIRD Sun4C VAC cache size, tell davem"); prom_halt(); } /* setup the low-level assembly routine ptrs */ if(sun4c_vacinfo.do_hwflushes) { if(sun4c_vacinfo.linesize == 16) { sun4c_ctxflush = (unsigned long)sun4c_ctxflush_hw64KB16B; sun4c_segflush = (unsigned long)sun4c_segflush_hw64KB16B; sun4c_pgflush = (unsigned long)sun4c_pgflush_hw64KB16B; } else if(sun4c_vacinfo.linesize == 32) { sun4c_ctxflush = (unsigned long)sun4c_ctxflush_hw64KB32B; sun4c_segflush = (unsigned long)sun4c_segflush_hw64KB32B; sun4c_pgflush = (unsigned long)sun4c_pgflush_hw64KB32B; } else { printk("WEIRD Sun4C VAC cache line size, tell davem\n"); prom_halt(); } } else { if(sun4c_vacinfo.linesize == 16) { sun4c_ctxflush = (unsigned long)sun4c_ctxflush_sw64KB16B; sun4c_segflush = (unsigned long)sun4c_segflush_sw64KB16B; sun4c_pgflush = (unsigned long)sun4c_pgflush_sw64KB16B; } else if(sun4c_vacinfo.linesize == 32) { sun4c_ctxflush = (unsigned long)sun4c_ctxflush_sw64KB32B; sun4c_segflush = (unsigned long)sun4c_segflush_sw64KB32B; sun4c_pgflush = (unsigned long)sun4c_pgflush_sw64KB32B; } else { printk("WEIRD Sun4C VAC cache line size, tell davem\n"); prom_halt(); } } sun4c_flush_all(); sun4c_enable_vac(); printk("enabled\n"); return; } extern int num_segmaps, num_contexts; /* XXX Only called on sun4c XXX */ void probe_mmu(void) { int cpuid; /* who are we? */ cpuid = get_cpuid(); switch(sparc_cpu_model) { case sun4: case sun4c: case sun4e: /* A sun4, sun4c or sun4e. */ num_segmaps = prom_getintdefault(prom_root_node, "mmu-npmg", 128); num_contexts = find_mmu_num_contexts(prom_root_node); printk("cpu%d MMU segmaps: %d MMU contexts: %d\n", cpuid, num_segmaps, num_contexts); break; default: printk("cpu%d probe_mmu: sparc_cpu_model botch\n", cpuid); break; }; } /* Clock probing, we probe the timers here also. */ volatile unsigned int foo_limit; void probe_clock(int fchild) { register int node, type; struct linux_prom_registers clk_reg[2]; /* This will basically traverse the node-tree of the prom to see * which timer chip is on this machine. */ node = 0; if(sparc_cpu_model == sun4) { printk("probe_clock: No SUN4 Clock/Timer support yet...\n"); return; } if(sparc_cpu_model == sun4c) node=prom_getchild(prom_root_node); else if(sparc_cpu_model == sun4m) node=prom_getchild(prom_searchsiblings(prom_getchild(prom_root_node), "obio")); type = 0; sp_clock_typ = MSTK_INVALID; for(;;) { prom_getstring(node, "model", node_str, sizeof(node_str)); if(strcmp(node_str, "mk48t02") == 0) { sp_clock_typ = MSTK48T02; if(prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) { printk("probe_clock: FAILED!\n"); halt(); } prom_apply_obio_ranges(clk_reg, 1); /* Map the clock register io area read-only */ mstk48t02_regs = (struct mostek48t02 *) sparc_alloc_io((void *) clk_reg[0].phys_addr, (void *) 0, sizeof(*mstk48t02_regs), "clock", 0x0, 0x0); mstk48t08_regs = 0; /* To catch weirdness */ break; } if(strcmp(node_str, "mk48t08") == 0) { sp_clock_typ = MSTK48T08; if(prom_getproperty(node, "reg", (char *) clk_reg, sizeof(clk_reg)) == -1) { printk("probe_clock: FAILED!\n"); halt(); } prom_apply_obio_ranges(clk_reg, 1); /* Map the clock register io area read-only */ mstk48t08_regs = (struct mostek48t08 *) sparc_alloc_io((void *) clk_reg[0].phys_addr, (void *) 0, sizeof(*mstk48t08_regs), "clock", 0x0, 0x0); mstk48t02_regs = &mstk48t08_regs->regs; break; } node = prom_getsibling(node); if(node == 0) { printk("Aieee, could not find timer chip type\n"); return; } } if(sparc_cpu_model == sun4c) { /* Map the Timer chip, this is implemented in hardware inside * the cache chip on the sun4c. */ sparc_alloc_io ((void *) SUN4C_TIMER_PHYSADDR, (void *) TIMER_VADDR, sizeof (*SUN4C_TIMER_STRUCT), "timer", 0x0, 0x0); /* Have the level 10 timer tick at 100HZ. We don't touch the * level 14 timer limit since we are letting the prom handle * them until we have a real console driver so L1-A works. */ SUN4C_TIMER_STRUCT->timer_limit10 = (((1000000/HZ) + 1) << 10); master_l10_limit = &(SUN4C_TIMER_STRUCT->timer_limit10); master_l10_counter = &(SUN4C_TIMER_STRUCT->cur_count10); } else { int reg_count; struct linux_prom_registers cnt_regs[PROMREG_MAX]; int obio_node, cnt_node; cnt_node = 0; if((obio_node = prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 || (obio_node = prom_getchild (obio_node)) == 0 || (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) { printk ("Cannot find /obio/counter node\n"); prom_halt (); } reg_count = prom_getproperty(cnt_node, "reg", (void *) cnt_regs, sizeof(cnt_regs)); reg_count = (reg_count/sizeof(struct linux_prom_registers)); /* Apply the obio ranges to the timer registers. */ prom_apply_obio_ranges(cnt_regs, reg_count); /* Map the per-cpu Counter registers. */ sparc_alloc_io(cnt_regs[0].phys_addr, (void *) TIMER_VADDR, PAGE_SIZE*NCPUS, "counters_percpu", cnt_regs[0].which_io, 0x0); /* Map the system Counter register. */ sparc_alloc_io(cnt_regs[reg_count-1].phys_addr, (void *) TIMER_VADDR+(NCPUS*PAGE_SIZE), cnt_regs[reg_count-1].reg_size, "counters_system", cnt_regs[reg_count-1].which_io, 0x0); sun4m_timers = (struct sun4m_timer_regs *) TIMER_VADDR; /* Avoid interrupt bombs... */ foo_limit = (volatile) sun4m_timers->l10_timer_limit; /* Must set the master pointer first or we will lose badly. */ master_l10_limit = &(((struct sun4m_timer_regs *)TIMER_VADDR)->l10_timer_limit); master_l10_counter = &(((struct sun4m_timer_regs *)TIMER_VADDR)->l10_cur_count); ((struct sun4m_timer_regs *)TIMER_VADDR)->l10_timer_limit = (((1000000/HZ) + 1) << 10); } } /* Probe and map in the Auxiliaary I/O register */ void probe_auxio(void) { int node, auxio_nd; struct linux_prom_registers auxregs[1]; node = prom_getchild(prom_root_node); auxio_nd = prom_searchsiblings(node, "auxiliary-io"); if(!auxio_nd) { node = prom_searchsiblings(node, "obio"); node = prom_getchild(node); auxio_nd = prom_searchsiblings(node, "auxio"); if(!auxio_nd) { printk("Cannot find auxio node, cannot continue...\n"); prom_halt(); } } prom_getproperty(auxio_nd, "reg", (char *) auxregs, sizeof(auxregs)); prom_apply_obio_ranges(auxregs, 0x1); /* Map the register both read and write */ sparc_alloc_io(auxregs[0].phys_addr, (void *) AUXIO_VADDR, auxregs[0].reg_size, "auxilliaryIO", auxregs[0].which_io, 0x0); printk("Mapped AUXIO at paddr %08lx vaddr %08lx\n", (unsigned long) auxregs[0].phys_addr, (unsigned long) AUXIO_VADDR); } extern unsigned long probe_memory(void); extern struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS]; unsigned int phys_bytes_of_ram, end_of_phys_memory; extern void probe_mbus(void); /* #define DEBUG_PROBE_DEVICES */ struct prom_cpuinfo linux_cpus[NCPUS]; int linux_num_cpus; unsigned long probe_devices(unsigned long mem_start) { int nd, i, prom_node_cpu, thismid; int cpu_nds[NCPUS]; /* One node for each cpu */ int cpu_ctr = 0; prom_getstring(prom_root_node, "device_type", node_str, sizeof(node_str)); if(strcmp(node_str, "cpu") == 0) { cpu_nds[0] = prom_root_node; cpu_ctr++; } else { int scan; scan = prom_getchild(prom_root_node); nd = 0; while((scan = prom_getsibling(scan)) != 0) { prom_getstring(scan, "device_type", node_str, sizeof(node_str)); if(strcmp(node_str, "cpu") == 0) { cpu_nds[cpu_ctr] = scan; linux_cpus[cpu_ctr].prom_node = scan; prom_getproperty(scan, "mid", (char *) &thismid, sizeof(thismid)); linux_cpus[cpu_ctr].mid = thismid; cpu_ctr++; } }; if(cpu_ctr == 0) { printk("No CPU nodes found, cannot continue.\n"); /* Probably a sun4d or sun4e, Sun is trying to trick us ;-) */ halt(); } printk("Found %d CPU prom device tree node(s).\n", cpu_ctr); }; prom_node_cpu = cpu_nds[0]; linux_num_cpus = cpu_ctr; for(i=0; i<cpu_ctr; i++) { prom_getstring(cpu_nds[i], "name", node_str, sizeof(node_str)); printk("cpu%d: %s \n", i, node_str); } probe_cpu(); probe_auxio(); if(sparc_cpu_model != sun4c) probe_mbus(); return mem_start; } |